




Sašo Džeroski, Pierre Geurts and Juho Rousu (Eds.)

Machine Learning
in

Systems Biology

Proceedings of The Third International Workshop
September 5-6, 2009
Ljubljana, Slovenia



Contact Information

Postal address:

Department of Computer Science
P.O.Box 68 (Gustaf Hällströminkatu 2b)
FIN-00014 University of Helsinki
Finland

URL: http://www.cs.helsinki.fi

Telephone: +358 9 1911
Telefax: +358 9 191 51120

Series of Publications B, Report B-2009-1
ISSN 1458-4786
ISBN 978-952-10-5699-4
Computing Reviews (1998) Classification: F.2,I.2.6,G.3,J.3
Helsinki 2009
Helsinki University Printing House



Preface

Molecular biology and all the biomedical sciences are undergoing a true rev-
olution as a result of the emergence and growing impact of a series of new
disciplines and tools sharing the ’-omics’ suffix in their name. These include in
particular genomics, transcriptomics, proteomics and metabolomics, devoted re-
spectively to the examination of the entire systems of genes, transcripts, proteins
and metabolites present in a given cell or tissue type. The availability of these
new, highly effective tools for biological exploration is dramatically changing the
way one performs research in at least two respects. First, the amount of available
experimental data is not a limiting factor any more; on the contrary, there is
a plethora of it. Given the research question, the challenge has shifted towards
identifying the relevant pieces of information and making sense out of it (a ’data
mining’ issue). Second, rather than focus on components in isolation, we can now
try to understand how biological systems behave as a result of the integration
and interaction between the individual components that one can now monitor
simultaneously, so called ’systems biology’.

Machine learning naturally appears as one of the main drivers of progress in
this context, where most of the targets of interest deal with complex structured
objects: sequences, 2D and 3D structures or interaction networks. At the same
time bioinformatics and systems biology have already induced significant new de-
velopments of general interest in machine learning, for example in the context of
learning with structured data, graph inference, semi- supervised learning, system
identification, and novel combinations of optimization and learning algorithms.

This book contains the scientific contributions presented at the Third In-
ternational Workshop on Machine Learning in Systems Biology (MLSB’2009),
held in Ljubljana, Slovenia from September 5 to 6, 2009. The workshop was
organized as a core event of the PASCAL2 Network of Excellence, under the
IST programme of European Union. The aim of the workshop was to contribute
to the cross-fertilization between the research in machine learning methods and
their applications to systems biology (i.e., complex biological and medical ques-
tions) by bringing together method developers and experimentalists.

The technical program of the workshop consisted of invited lectures, oral
presentations and poster presentations. Invited lectures were given by Diego
di Bernardo, Roman Jerala, Nick Juty, Yannis Kalaidzidis, Ross D. King, and
William Stafford Noble. Twelve oral presentations were given, for which extended
abstracts (papers) are included in this book: these were selected from 18 sub-
missions, each reviewed by three members of the scientific program committee.
Twenty-two poster presentations were given, for which one-page abstracts are
included here. We would like to thank all the people contributing to the techni-
cal programme, the scientific program committee, the local organizers and the
sponsors for making the workshop possible.

Ljubljana, September 2009 Sašo Džeroski, Pierre Geurts and Juho Rousu
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Céline Rouveirol (University of Paris XIII, France)
Yvan Saeys (University of Gent, Belgium)
Guido Sanguinetti (University of Sheffield, UK)
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Céline Brouard, Julie Dubois, Marie-Anne Debily, Christel Vrain,
and Florence d’Alché-Buc
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MLSB’09: 3rd Intl Wshp on Machine Learning and Systems Biology 1

Networking Genes and Drugs: Understanding
Drug Mode of Action and Gene Function from

Large-scale Experimental Data

Diego di Bernardo1,2

1 Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
2 Department of Computer and Systems Engineering,
University of Naples “Federico II”, Naples 80125, Italy

Abstract. A cell can be described as a synergistic ensemble of biologi-
cal entities (mRNA, proteins, ncRNA, metabolites, etc) interacting with
each other, whose collective behaviour causes the observed phenotypes.
A great research effort is ongoing in identifying and mapping the network
of interactions among biomolecules in mammalian species. The idea of
harnessing this network to understand human diseases at the molecular
level, and possibly to find suitable drugs for their treatment, is fasci-
nating but still unfulfilled. We will show how it is possible to harness
experimental data on human cells and tissue to identify the gene regu-
latory networks among tens of thousands of genes, and how to use this
information to analyse the modular structure of the cell and predict the
function of each gene. Moreover, we will show how using these data it
is also possible to identify a suitable drug, or a combination of drugs,
that can restore the physiological behaviour of the affected pathways in
human diseases.
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MLSB’09: 3rd Intl Wshp on Machine Learning and Systems Biology 3

Synthetic Biology: Achievements and Prospects
for the Future

Roman Jerala1,2

1 Department of Biotechnology, National institute of Chemistry, Ljubljana, Slovenia
2 Faculty of Chemistry and chemical technology, University of Ljubljana, Slovenia

Abstract. Synthetic biology, which combines engineering approach in
biological systems is getting a strong momentum due to the recent tech-
nological advances, which allow us to manipulate the genetic information
at an unprecedented scale. Currently synthetic biology is exploiting its
potentials and advantages but also bottlenecks. We will review some suc-
cess stories of synthetic biology in different field of applications, such as
medicine, energy and materials. Medical applications of synthetic biol-
ogy are some of the most promising areas of synthetic biology, partic-
ularly for the alternative methods of drug production, biosensors and
also different therapeutic applications. Recent developments in our un-
derstanding of cellular signaling and host-pathogen interactions provide
the opportunity for new types of medical intervention, where we can
utilize parts of the existing or re-engineer signaling responses connected
to various pathological conditions. Knowledge of the ways that microbes
use to avoid the human immune response allows us to devise approach to
bypass those microbial strategies. We will look at three different applica-
tions of synthetic biology, which involve re-engineering of cell signaling
pathways, which we have prepared for the international genetically engi-
neered machines competition in years 2006-2008. We have designed and
demonstrated proof of the concept of antiviral detection and defense sys-
tem based on essential viral functions that is independent on mutations
and a synthetic vaccine that activates both innate and adaptive immune
response.
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Ontologies for Systems Biology

Nick Juty

EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus
Hinxton, Cambridge, CB10 1SD, United Kingdom

Abstract. The ease with which modern computational and theoreti-
cal tools can be applied to modeling has led to an exponential increase
in the size and complexity of computational models in biology. At the
same time, the accelerating pace of progress also highlights limitations
in current approaches to modeling. One of these limitations is the insuffi-
cient degree to which the semantics and qualitative behaviour of models
are systematised and expressed formally enough to support unambigu-
ous interpretation by software systems. As a result, human intervention
is required to interpret and connect a model’s mathematical structures
with information about the its meaning (semantics). Often, this critical
information is usually communicated through free-text descriptions or
non-standard annotations; however, free-text descriptions cannot easily
be interpreted by current modeling tools.
We will describe three efforts to standardise the encoding of missing
semantics for kinetic models. The overall approach involves connecting
model elements to common, external sources of information that can be
extended as existing knowledge is expanded and refined. These exter-
nal sources are carefully managed public, free, consensus ontologies: the
Systems Biology Ontology (SBO), the Kinetic Simulation Algorithm On-
tology (KiSAO), and the Terminology for the Description of Dynamics
(TeDDy). Together they provide a means for annotating a model with
stable and perennial identifiers which reference machine-readable regu-
lated terms defining the semantics of the three facets of the modeling
process: 1. the relationship between the model and the biology it aims to
describe, 2. the process used to simulate the model and obtain expected
results, and 3. the results themselves.
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MLSB’09: 3rd Intl Wshp on Machine Learning and Systems Biology 7

Quantitative Microscopy: Bridge Between “Wet”
Biology and Computer Science

Yannis Kalaidzidis

Max Plank Institute of Molecular Cell Biology and Genetics
Pfotenhauerstrasse 108, 01307, Dresden, Germany

Abstract. Quantification of experimental evidence is an important as-
pect of modern life science. In microscopy, this causes a shift from pure
presentation of “supporting cases” toward the quantification of the pro-
cesses under study. Computer image processing breaks through the light
microscopy diffraction limit, it allows to track individual molecules in
the life specimen, quantify distribution and co-localization of compart-
ment markers, etc. The quantified experimental data forms a basis for
the models of the biological processes. Quality of predictive models is
crucially dependent on the accuracy of the quantified experimental data.
The quality of experimental data is a function of algorithms as well as the
imperfections of the “wet” experiment. The number of research papers
devoted to the algorithms of microscopy image analysis, segmentation,
classification and tracking has grown very fast in the last two decades.
The analysis of the source of noise in “wet” biology and microscopy has
gotten less attention. In this talk I will focus on the correction of ex-
perimental data before applying analysis algorithms. These corrections
have two faces. They are obligatory to compensate for imperfections of
“wet” microscopy while at the same time this correction can break some
assumptions, which form the basis of algorithms for subsequent anal-
ysis. The examples of the different approaches for “pre-” and “post-”
correction will be presented.
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On the Automation of Science

Ross D. King

Department of Computer Science, Aberystwyth University, Wales, UK

Abstract. The basis of science is the hypothetico-deductive method
and the recording of experiments in sufficient detail to enable repro-
ducibility. We report the development of the Robot Scientist ”Adam”
which advances the automation of both. Adam has autonomously gen-
erated functional genomics hypotheses about the yeast Saccharomyces
cerevisiae, and experimentally tested these hypotheses using laboratory
automation. We have confirmed Adam’s conclusions through manual ex-
periments. To describe Adam’s research we have developed an ontology
and logical language. The resulting formalization involves over 10,000 dif-
ferent research units in a nested tree-like structure, ten levels deep, that
relates the 6.6 million biomass measurements to their logical descrip-
tion. This formalization describes how a machine discovered new scien-
tific knowledge. Describing scientific investigations in this way opens up
new opportunities to apply machine learning and data-mining to discover
new knowledge.
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Machine Learning Methods for Protein Analyses

William Stafford Noble1,2

1 Department of Genome Sciences, University of Washington, Seattle, WA 98195
2 Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195

Abstract. Computational biologists, and biologists more generally, spend
a lot of time trying to more fully characterize proteins. In this talk, I will
describe several of our recent efforts to use machine learning methods
to gain a better understanding of proteins. First, we tackle one of the
oldest problems in computational biology, the recognition of distant evo-
lutionary relationships among protein sequences. We show that by ex-
ploiting a global protein similarity network, coupled with a latent space
embedding, we can detect remote protein homologs more accurately than
state-of-the-art methods such as PSI-BLAST and HHPred. Second, we
use machine learning methods to improve our ability to identify pro-
teins in complex biological samples on the basis of shotgun proteomics
data. I will describe two quite different approaches to this problem, one
generative and one discriminative.
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Papers





A comparison of AUC estimators in
small-sample studies

Antti Airola,1 Tapio Pahikkala,1 Willem Waegeman,2 Bernard De Baets,2 and
Tapio Salakoski1

1 Department of Information Technology, University of Turku and Turku Centre for
Computer Science (TUCS), Joukahaisenkatu 3-5 B, Turku, Finland

2 KERMIT, Department of Applied Mathematics, Biometrics and Process Control,
Coupure links 653, Ghent University, Belgium

Abstract. Reliable estimation of the classification performance of
learned predictive models is difficult, when working in the small sam-
ple setting. When dealing with biological data it is often the case that
separate test data cannot be afforded. Cross-validation is in this case a
typical strategy for estimating the performance. Recent results, further
supported by experimental evidence presented in this article, show that
many standard approaches to cross-validation suffer from extensive bias
or variance when the area under ROC curve (AUC) is used as perfor-
mance measure. We advocate the use of leave-pair-out cross-validation
(LPOCV) for performance estimation, as it avoids many of these prob-
lems.

1 Introduction

Small-sample biological datasets, such as microarray data, exhibit properties
which pose serious challenges for reliable evaluation of the quality of prediction
functions learned from this data. It is typical for genomic studies to produce data
containing thousands of features, measured from a small sample of possibly only
tens of examples. Further, the relative distribution of the classes to be predicted
is often highly imbalanced and their discriminability can be quite low.

AUC is a ranking-based measure of classification performance, which has
gained substantial popularity in the machine learning community during recent
years [1–3]. Its value can be interpreted as the probability that a classifier is
able to distinguish a randomly chosen positive example from a randomly chosen
negative example. In contrast to many alternative performance measures, AUC
is invariant to relative class distributions, and class-specific error costs. These
properties have prompted the use of the AUC measure in microarray studies [4,
5], medical decision making [6], and evaluation of biomedical text mining systems
[7] to name a few examples.

When setting aside data for parameter estimation and validation of results
cannot be afforded, cross-validation is typically used. However, in [8] it was shown
that when considering AUC in the small-sample setting, many commonly used
cross-validation schemes suffer from substantial negative bias. In this work, we

15



explore this issue further and propose LPOCV, first considered in [9] for ranking
tasks, as an approach that provides an almost unbiased estimate of expected
AUC performance, and also does not suffer from as high variance as some of the
alternative strategies.

2 Performance Estimation

Let D be a probability distribution over a sample space Z = X × Y, where
the input space X is a set and the output space Y = {−1, 1}. An example
z = (x, y) ∈ Z is thus a pair consisting of an input and an associated label, which
describes whether the example belongs to the positive or to the negative class.
The conditional distribution of an input from X , given that it belongs to the
positive class is denoted by D+, and given that it belongs to the negative class by
D−. Further, let the sequence Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm drawn indepen-
dent and identically distributed from D be a training set of m training examples,
with X = (x1, . . . , xm) ∈ Xm denoting the inputs and Y = (y1, . . . , ym) ∈ Ym

the labels in the training set.
Now let us consider a prediction function fZ returned by a learning algo-

rithm based on a fixed training set Z. We are interested in the generalization
performance of this function, that is, how well it will predict on unseen future
data. The generalization performance of fZ can be measured by its expected
AUC A(fZ), sometimes also known as expected ranking accuracy [10], over all
possible positive-negative example pairs, that is

A(fZ) = Ex+∼D+x−∼D− [H(fZ(x+)− fZ(x−))]

where H is the Heaviside step function, for which H(a) is 1 if a > 0, 1/2 if
a = 0, and 0 if a < 0. We call this measure the conditional expected AUC of the
prediction function, as it is conditioned on a fixed training set Z.

Alternatively, we may also want to consider the expectation taken over all
possible training sets of size m. The unconditional expected AUC can be defined
as

EZ∼Dm [A(fZ)].

As discussed for example in [11, 12], these two measures correspond to two
different questions of interest. The conditional expected performance corresponds
to the question how well we expect that a prediction function learned from a
given training set will generalize to future examples. The unconditional expected
performance measures the quality of the learning algorithm itself, that is, how
well on average will a prediction function learned by the algorithm of interest
from a dataset of a given size generalize to new data.

More often, machine learning related articles concentrate on the uncondi-
tional performance, as the goal usually is to measure the quality of learning
algorithms, where the training data is treated as a random variable. However,
as argued by [11], the conditional error estimate is more of interest in a setting

16 MLSB’09: A. Airola et al.



where a researcher is using a certain dataset and wants to know how well a pre-
diction function learned from that particular dataset will do on future examples.
This is the setting we concentrate on in this paper.

In practice we almost never can directly access the probability distribution
D to calculate A, but are rather limited to using some estimate Â instead. To
measure the quality of an estimator, in terms of its ability to measure conditional
expected AUC, we follow the setting of [11]. We consider the deviation B(Z) =
Â(fZ) − A(fZ), which measures the difference between the estimated and true
conditional expected AUC of a prediction function.

We study the expected value EZ∼Dm [B(Z)] of the deviation distribution as
a measure of the biasedness of the estimator. Further, we consider the variance
VarZ∼Dm [B(Z)] of the deviation distribution, as a measure of the reliability
of individual estimates. Preferably an estimator would have both close to zero
deviation mean and variance.

The AUC measure can be calculated using the following formula, also called
the Wilcoxon-Mann-Whitney statistic:

Â(S, fZ) =
1

|S+||S−|
∑

xi∈S+

∑
xj∈S−

H(fZ(xi)− fZ(xj)),

where S is a sequence of examples, and S+ ⊂ S and S− ⊂ S denote the positive
and negative examples in S, respectively. (for proof, see [13]).

In this paper, we consider a commonly used performance evaluation technique
known as cross-validation. Here, the dataset is repeatedly partitioned into two
non-overlapping parts, a training set and a hold-out set. For each partitioning,
the hold-out set is used for testing while the remainder is used for training. The
two most popular variants are tenfold cross-validation, where the data is split
into ten mutually disjoint folds, and leave-one-out cross-validation (LOOCV),
where each training example constitutes its own fold.

Stratification is commonly done to ensure that the hold-out sets share ap-
proximately the same class distributions. Further, for stratified CV on small
datasets [8] has recently suggested a balancing strategy to ensure that all the
training sets share the same number of positive and negative examples. When
the sample size for a class is not a multiple of the number of folds, some folds
will contain one extra example from that class compared to the other folds. The
balancing is done by randomly removing members of overrepresented classes on
each round of cross-validation, so that all the training sets contain the same
number of examples from each class.

As discussed in [1, 8], two alternative strategies can be used to calculate the
cross-validation estimate over the folds, pooling and averaging.

In pooling, the predictions made in each cross-validation round are pooled
into a one set and one common AUC score is calculated from it. For LOOCV
this is the only way to obtain the AUC score. The assumption made when
using pooling is that classifiers produced on different cross-validation rounds
come from the same population. This assumption may make sense when using
performance measures such as classification accuracy, but it is more dubious

A comparison of AUC estimators in small-sample studies: MLSB’09 17



when computing AUC, since some of the positive-negative pairs are constructed
using data instances from different folds. Indeed, [8] show that this assumption
is generally not valid for cross-validation and can lead to large pessimistic biases.
In their experiments with no-signal data sets, AUC values of less than 0.3 were
observed instead of the expected 0.5.

An alternative approach, averaging, is to calculate the AUC score separately
for each cross-validation fold and average them to obtain one common perfor-
mance estimate. However, the number of positive-negative example pairs in the
folds may be too small for calculating AUC reliably when using small imbalanced
datasets. As an extreme case, if there are more folds than observations for the
minority class, then some of the folds cannot have examples from this class. For
such folds, the AUC cannot be calculated.

LPOCV [9, 14] was first introduced for general ranking tasks. Here, we pro-
pose its use for AUC calculation, since it avoids many of the pitfalls associated
with the pooling and averaging techniques. Analogously to LOOCV, each pos-
sible positive-negative pair of training instances is left out of at a time from the
training set. Formally, the AUC performance is calculated with LPOCV as

1
|X+||X−|

∑
xi∈X+

∑
xj∈X−

H(f{i,j}(xi)− f{i,j}(xj)),

where f{i,j} denotes a classifier trained without the i-th and j-th training ex-
ample. Being an extreme form of averaging, where each positive-negative pair of
training examples forms an individual hold-out set, this approach is natural when
AUC is used as a performance measure, since it guarantees the maximal use of
available training data. Moreover, the LPOCV estimate, taken over a training
set of m examples, is an unbiased estimate of the unconditional expected AUC
over a sample of m− 2 examples (for a proof, see [9]).

The computational cost can be seen as a limitation for cross-validation tech-
niques in general, and in particular for the LOOCV and LPOCV. For a training
set of m examples a straightforward implementation of LOOCV requires train-
ing the learner m times, with LPOCV the required number of training rounds is
of the order O(m2). While these computational costs may be affordable on small
training sets, they can become a limiting factor as the training set size increases.

However, for regularized least-squares (RLS) [15] and the AUC-maximizing
ranking RLS (RankRLS) [16], efficient algorithms for cross-validation can be
derived using techniques based on matrix calculus [17, 14]. Since these algorithms
have state-of-the-art classification performance similar to that of the Support
Vector Machine (SVM), and Ranking SVM (see e.g. [18, 16]), they are a natural
choice to use in settings where cross-validation is important.

3 Empirical study

In the simulation study, we measure the mean and variance of the deviation
distribution of several different cross-validation estimators. We consider three
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pooled strategies; LOOCV, balanced LOOCV and pooled tenfold, as well as the
averaged fivefold, tenfold and LPOCV. Stratification is used where possible.

Our setting is similar to that of [8], where the bias of pooling and averaging
approaches was compared on low-dimensional data. We consider synthetic data,
as this allows estimating the conditional expected AUC of the learned prediction
functions. The training set size is 30 examples in all the simulations, the relative
distribution of positive examples is varied between 10% and 90% on 10 percent-
age unit intervals. We consider both low-dimensional data with 10 features, and
high-dimensional data with 1000 features.

In the no-signal experiment, there is no difference between the two classes.
Examples from both classes are sampled from normal distributions with zero
mean, unit variance and no covariance between the features. The conditional
expected AUC of a prediction function is in this setting 0.5, as no model can do
either better or worse than random, in terms of AUC. In the signal experiment
the means of a number of features are shifted to 0.5 for the positive, and to -0.5
for the negative class. With 10 features, 1 feature is shifted, with 1000 features,
10 features are shifted. Generated test sets with 10000 examples are used to
estimate the conditional expected AUC of the learned prediction functions.

Two learning algorithms are considered in the experiments, RLS and
RankRLS. RLS optimizes an approximation of accuracy, like most machine learn-
ing algorithms, while RankRLS optimizes more directly the AUC. We only in-
vestigated the linear kernel, since in bioinformatics it is commonly assumed that
high-dimensional data can be separated in a linear way. The considered learners
have also a regularization parameter, which controls the tradeoff between model
complexity and fit to the training data. In the experiments we did not find the
level of regularization applied to have major effect on the relative quality of the
cross-validation estimates, so we consider only the results for regularization pa-
rameter value 1. The used learning and cross-validation algorithms are from our
RLScore software package, available at http://www.tucs.fi/rlscore. All the
experiments are repeated 10000 times. We assess the significance of the differ-
ence between the deviation of the LPOCV estimate and the alternative estimates
using the Wilcoxon signed-rank test, with p = 0.05, applying the Bonferroni cor-
rection for multiple hypothesis testing.

Figure 1 displays the results for non-signal data. When using the RLS- learner
on low-dimensional data, we observe a substantial bias for the pooled estimators,
with balanced LOOCV being the least biased of them. The averaging strategies
work better, with LPOCV showing significantly less bias than all of the pooled
strategies. These results are consistent with those reported in [8]. With RankRLS
and low-dimensional data, the pessimistic bias of the pooled strategies is much
smaller, but nonetheless significant differences compared to the less pessimistic
LPOCV are observed. LPOCV and the other averaged strategies behave simi-
larly. On high-dimensional data none of the estimates show clear bias.

Figure 2 displays the results for signal data. Again, with the RLS learner and
low-dimensional data, a large pessimistic bias is present in the pooled estimates.
LPOCV gives significantly less biased performance estimates. For RankRLS we
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observe the same phenomenon, though the negative bias of the pooled strate-
gies is much smaller than for RLS (similarly to the no-signal experiment). On
high-dimensional data, most of the pessimistic bias seems to disappear from the
pooled estimates. With RankRLS, LOOCV actually provides significantly more
optimistic performance estimates than LPOCV, though the magnitudes of the
differences in their mean deviations are very small. Of the averaged strategies,
the bias of tenfold cross-validation is similar to that of LPOCV. However, av-
eraged fivefold cross-validation is in most of the signal experiments much more
pessimistically biased than LPOCV.

In all of the experiments, averaged tenfold and fivefold strategies have larger
variance than the pooled strategies and LPOCV. The more imbalanced the rela-
tive class distributions, the higher the variance becomes. This effect is magnified
for averaged tenfold and fivefold, as folds which do not have examples from both
classes can not be considered when calculating the average AUC.

To conclude, LPOCV shows very little bias in both low- and high dimensional
feature space, and has a very similar variance to that of the pooled strategies.
Averaged tenfold cross-validation is also very competitive in terms of bias, but
suffers from large variance, as does averaged fivefold cross-validation. Further-
more, for averaged fivefold large pessimistic bias appears in the signal experi-
ment. This is probably due to the fact that one fifth of the training data is held
out of the already very small training set in each round. LOOCV and balanced
LOOCV worked well in many settings, but both suffered from a large negative
bias on low-dimensional data and RLS learner.

4 Conclusion

In this work we have considered the merits and drawbacks of different condi-
tional expected AUC cross-validation estimators, in the small sample setting. In
terms of variance, the averaged fivefold and tenfold cross-validation proved to
be inferior to the pooled strategies and LPOCV. On low dimensional data sets,
large negative bias was observed in the pooled estimators showing that they can
systematically fail in such a setting. However, with increased dimensionality this
effect disappeared, suggesting that the pooled estimators can be very compet-
itive when using high dimensional data. LPOCV seems to be overall the most
robust method, as it is in all settings almost unbiased, and shows variance that
is competitive with that of the pooled estimators.

Based on the simulation results we suggest the use of LPOCV for AUC-
estimation due to its robustness. For RLS based learners calculating the LPOCV
can be done efficiently, for other types of methods the computational cost can
be high. Further study is needed to ascertain whether the large bias exhibited
by the pooled estimators is a phenomenom that appears only when dealing with
small dimensional data. If this is the case, the pooled CV strategies may also
be considered suitable for AUC estimation for high dimensional data, which is
a typical property of data produced by biomolecular studies.
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Fig. 1. Mean and variance of the deviation distribution for the non-signal data.
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Fig. 2. Mean and variance of the deviation distribution for the signal data.
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Abstract. In this work we propose new ensemble methods for the hier-
archical classification of gene functions. Our methods exploit the hierar-
chical relationships between the classes in different ways: each ensemble
node is trained “locally”, according to its position in the hierarchy; more-
over, in the evaluation phase the set of predicted annotations is built so
to minimize a global loss function defined over the hierarchy. We also
address the problem of sparsity of annotations by introducing a cost-
sensitive parameter that allows to control the precision-recall trade-off.
Experiments with the model organism S. cerevisiae, using the FunCat
taxonomy and 7 biomolecular data sets, reveal a significant advantage of
our techniques over “flat” and cost-insensitive hierarchical ensembles.

1 Introduction

“In silico” gene function prediction can generate hypotheses to drive the biolog-
ical discovery and validation of gene functions. Indeed, “in vitro” methods are
costly in time and money, and the computational prediction can support the
biologist in understanding the role of a protein or of a biological process, or in
annotating a new genome at high level of accuracy, or more in general in solving
problems in functional genomics.

Gene function prediction is a classification problem with the following distinc-
tive features: (a) a large number of classes, with multiple functional annotations
for each gene (a multiclass multilabel classification problem); (b) hierarchical
relationships between classes governed by the “true path rule” [1]; (c) unbalance
between positive and negative examples for most classes (sparse multilabels);
(d) uncertainty of labels and incompleteness of annotations; (e) availability and
need of integration of multiple sources of data.

This paper focuses on the three first items, proposing an ensemble approach
for the hierarchical cost-sensitive classification of gene functions at genome and
ontology-wide level. Indeed, in this context “flat” methods may introduce large
inconsistencies in parent-child relationships between classes, and a hierarchical
approach may correct “flat” predictions in order to improve the accuracy and
the consistency of the overall annotations of genes [2]. We propose a hierarchi-
cal bottom-up Bayesian cost-sensitive ensemble that on the one hand respects
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the consistency of the taxonomy, and on the other hand exploits the hierar-
chical relationships between the classes. Our approach also takes into account
the sparsity of annotations in order to improve the precision and the recall of
the predictions. We also propose a simple variant of the hierarchical top-down
algorithm that optimizes the decision threshold for maximizing the F-score.

Different research lines have been proposed for the hierarchical prediction
of gene functions, ranging from structured-output methods, based on the joint
kernelization of both input variables and output labels [3, 4], to ensemble meth-
ods, where different classifiers are trained to learn each class, and then combined
to take into account the hierarchical relationships between functional classes [2,
5]. Our work goes along this latter line of research, and our main contribution
is the introduction of a global cost-sensitive approach and the adaptation of
a Bayesian bottom-up method to the hierarchical prediction of gene functions
using the FunCat taxonomy [6].

Notation and terminology. We identify the N functional classes of the FunCat
taxonomy with the nodes i = 1, . . . , N of a tree T . The root of T is a dummy
class with index 0, which every gene belongs to, that we added to facilitate the
processing. The FunCat multilabel of a gene is the nonempty subset of {1, . . . , N}
corresponding to all FunCat classes that can be associated with the gene. We
denote this subset using the incidence vector v = (v1, . . . , vN ) ∈ {0, 1}N . The
multilabel of a gene is built starting from the set of terms occurring in the gene’s
FunCat annotation. As these terms correspond to the most specific classes in T ,
we add to them all the nodes on paths from these most specific nodes to the
root. This “transitive closure” operation ensures that the resulting multilabel
satisfies the true path rule. Conversely, we say that a multilabel v ∈ {0, 1}N
respects T if and only if v is the union of one or more paths in T , where each
path starts from a root but need not terminate on a leaf. All the hierarchical
algorithms considered in this paper generate multilabels that respect T . Finally,
given a set of d features, we represent a gene with the normalized (unit norm)
vector x ∈ Rd of its feature values.

2 Methods

The hbayes ensemble method [7, 8] is a general technique for solving hierarchical
classification problems on generic taxonomies. The method consists in training a
calibrated classifier at each node of the taxonomy. This is used to derive estimates
p̂i(x) of the probabilities pi(x) = P

(
Vi = 1 | Vpar(i) = 1, x

)
for all x and i, where

(V1, . . . , VN ) ∈ {0, 1}N is the vector random variable modeling the multilabel of
a gene x and par(i) is the unique parent of node i in T . In order to enforce that
only multilabels V that respect T should have nonzero probability, the base
learner at node i is only trained on the subset of the training set including all
examples (x,v) such that vpar(i) = 1.

In the evaluation phase, hbayes predicts the Bayes-optimal multilabel ŷ ∈
{0, 1}N for a gene x based on the estimates p̂i(x) for i = 1, . . . , N . Namely,
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ŷ = argminy E
[
`H(y,V ) | x

]
, where the expectation is w.r.t. the distribution

of V . Here `H(y,V ) denotes the H-loss [7, 8], measuring a notion of discrepancy
between the multilabels y and V . The main intuition behind the H-loss is simple:
if a parent class has been predicted wrongly, then errors in its descendants should
not be taken into account. Given fixed cost coefficients c1, . . . , cN > 0, `H(ŷ,v)
is computed as follows: all paths in the taxonomy T from the root 0 down to
each leaf are examined and, whenever a node i ∈ {1, . . . , N} is encountered such
that ŷi 6= vi, then ci is added to the loss, while all the other loss contributions
from the subtree rooted at i are discarded. As shown in [8], ŷ can be computed
via a simple bottom-up message-passing procedure whose only parameters are
the probabilities p̂i(x).

We now describe a simple cost-sensitive variant, hbayes-cs, of hbayes,
which is suitable for learning datasets whose multilabels are sparse. This variant
introduces a parameter α that is used to trade-off the cost of false positive (FP)
and false negative (FN) mistakes. We start from an equivalent reformulation of
the hbayes prediction rule

ŷi = argmin
y∈{0,1}

c−i pi(1− y) + c+i (1− pi)y + pi{y = 1}
∑

j∈child(i)

Hj

 (1)

where Hj = c−j pj(1 − ŷj) + c+j (1 − pj)ŷj +
∑
k∈child(j)Hk is recursively defined

over the nodes j in the subtree rooted at i with each ŷj set according to (1),
and {A } is the indicator function of event A. Furthermore, c−i = c+i = ci/2 are
the costs associated to a FN (resp., FP) mistake. In order to vary the relative
costs of FP and FN, we now introduce a factor α ≥ 0 such that c−i = αc+i while
keeping c+i + c−i = 2ci. Then (1) can be rewritten as

ŷi = 1⇐⇒ pi

2ci −
∑

j∈child(i)

Hj

 ≥ 2ci
1 + α

.

This is the rule used by hbayes-cs in our experiments.
Given a set of trained base learners providing estimates p̂1, . . . , p̂N , we com-

pare the quality of the multilabels computed by hbayes-cs with that of htd-cs,
a standard top-down hierarchical ensemble method with a cost sensitive param-
eter τ > 0. The multilabel predicted by htd-cs is defined by

ŷi = {p̂i(x) ≥ τ} × {ŷpar(i) = 1}

for i = 1, . . . , N (we assume that the guessed label ŷ0 of the root of T is always
1). Note that both methods use the same estimates p̂i. The only difference is in
the way the classifiers are defined in terms of these estimates.

3 Experimental results

We predicted the functions of genes of the unicellular eukaryote S. cerevisiae at
genome and ontology-wide level using the FunCat taxonomy [6] and 7 biomolec-
ular data sets, whose characteristics are summarized in Tab. 1.
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Table 1. Data sets

Data set Description num. of genes num. of features num. of classes

Pfam-1 protein domain binary data from Pfam 3529 4950 211
Pfam-2 protein domain log E data from Pfam 3529 5724 211
Phylo phylogenetic data 2445 24 187
Expr gene expression data 4532 250 230
PPI-BG PPI data from BioGRID 4531 5367 232
PPI-VM PPI data from von Mering experiments 2338 2559 177
SP-sim Sequence pairwise similarity data 3527 6349 211

Pfam-1 data are represented as binary vectors: each feature registers the
presence or absence of 4,950 protein domains obtained from the Pfam (Pro-
tein families) database [9]. Moreover, we also used an enriched representation
of Pfam domains (Pfam-2) by replacing the binary scoring with log E-values
obtained with the HMMER software toolkit [10]. The features of the phyloge-
netic data (Phylo) are the negative logarithm of the lowest E-value reported by
BLAST version 2.0 in a search against a complete genome in 24 organisms [11].
The “Expr” data set merges the experiments of Spellman et al. (gene expres-
sion measures relative to 77 conditions) [12] with the transcriptional responses
of yeast to environmental stress (173 conditions) by Gasch et al. [13]. Protein-
protein interaction data (PPI-BG) have been downloaded from the BioGRID
database, that collects PPI data from both high-throughput studies and con-
ventional focused studies [14]. Data are binary: they represent the presence or
absence of protein-protein interactions. We used also another data set of protein-
protein interactions (PPI-VM) that collects binary protein-protein interaction
data from yeast two-hybrid assay, mass-spectrometry of purified complexes, cor-
related mRNA expression and genetic interactions [15]. These data are binary
too. The “SP-sim” data set contains pairwise similarities between yeast genes
represented by Smith and Waterman log-E values between all pairs of yeast
sequences [16].

In order to get a not too small set of positive examples for training, for each
data set we selected only the FunCat-annotated genes and the classes with at
least 20 positive examples. As negative examples we selected for each node/class
all genes not annotated to that node/class, but annotated to its parent class.
From the data sets we also removed uninformative features (e.g., features with
the same value for all the available examples).

We used gaussian SVMs with probabilistic output [17] as base learners. Given
a set p̂1, . . . , p̂N of trained estimates, we compared on these estimates the results
of htd-cs and hbayes-cs ensembles with htd (the cost-insensitive version of
htd-cs, obtained by setting τ = 1/2) and flat (each classifier outputs its
prediction disregarding the taxonomy). For htd-cs we set the decision threshold
τ by internal cross-validation of the F-measure with training data, while for
hbayes-cs we set the cost factor α to 5 in all experiments. This value provides a
reasonable trade-off between between positive and negative examples, as shown
by the plots in Figure 2. We compared the different ensemble methods using
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Fig. 1. Histograms of the distribution of the normalized differences between F-measures
across FunCat classes and data sets. (a) hbayes-cs vs. flat ensembles; (b) hbayes-cs
vs. htd ensembles; (c) hbayes-cs vs. htd-cs ensembles.

external 5-fold cross-validation (thus without using test set data to tune the
hyper-parameters).

For the first set of experiments we used the classical F-score to aggregate pre-
cision and recall for each class of the hierarchy. Figure 1 shows the distribution,
across all the classes of the taxonomy and the data sets, of the normalized differ-
ences FBayes−Fens

max(FBayes,Fens)
between the F-measure of hbayes-cs and the F-measure

of each one of the other ensemble methods. The shape of the distribution offers
a synthetic visual clue of the comparative performances of the ensembles: val-
ues larger than 0 denote better results for hbayes-cs. In Figure 1.(a) we can
observe that hbayes-cs largely outperforms flat, since most of the values are
cumulated on the right part of the distribution. The comparison with htd, Fig-
ure 1.(b), shows that hbayes-cs on average improves on htd, while essentially a
tie is observed with htd-cs —Figure 1.(c). Indeed the average F-measure across
classes and data sets is 0.13 with flat ensembles, 0.18 with htd and 0.22 and
0.23, respectively, with hbayes-cs and htd-cs ensembles.
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Table 2. Left: Hierarchical F-measure comparison between htd, htd-cs, and hbayes-
cs ensembles. Right: win-tie-loss between the different hierarchical methods according
to the 5-fold cross-validated paired t-test at 0.01 significance level.

Methods Data sets
Pfam-1 Pfam-2 Phylo Expr PPI-BG PPI-VM SP-sim Average

htd 0.3771 0.0089 0.2547 0.2270 0.1521 0.4169 0.3370 0.2533
htd-cs 0.4248 0.2039 0.3008 0.2572 0.3075 0.4593 0.4224 0.3394
hbayes-cs 0.4518 0.2030 0.2682 0.2555 0.2920 0.4329 0.4542 0.3368

win-tie-loss
Methods htd-cs htd
hbayes-cs 2-4-1 6-1-0
htd-cs - 7-0-0

In order to better capture the hierarchical and sparse nature of the gene func-
tion prediction problem we also applied the hierarchical F-measure, expressing
in a synthetic way the effectiveness of the structured hierarchical prediction [18].
In brief, viewing a multilabel as a set of paths, hierarchical precision measures
the average fraction of each predicted path that is covered by some true path
for that gene. Conversely, hierarchical recall measures the average fraction of
each true path that is covered by some predicted path for that gene. Table 2
shows that the proposed hierarchical cost-sensitive ensembles outperform the
cost-insensitive htd approach. In particular, win-tie-loss summary results (ac-
cording to the 5-fold cross-validated paired t-test [19] at 0.01 significance level)
show that the hierarchical F-scores achieved by hbayes-cs and htd-cs are sig-
nificantly higher than those obtained by htd ensembles, while ties prevail in
the comparison between hbayes-cs and htd-cs (more precisely 2 wins, 4 ties
and 1 loss in favour of hbayes-cs, Table 2, right-hand side). flat ensembles
results with the hierarchical F-measure are not shown because they are signifi-
cantly worse than those obtained with any other hierarchical method evaluated
in these experiments.

Table 3 shows the per level F-measure results with Pfam-1 protein domain
data and Pairwise sequence similarity data (SP-sim). Level 1 refers to the root

Table 3. Per level precision, recall, F-measure and accuracy comparison between
flat, top-down (htd), hierarchical top-down cost sensitive (htd-cs), and hierarchi-
cal Bayesian cost sensitive (hbayes-cs) ensembles. Top: Pfam protein domain data.
Bottom: Pairwise sequence similarity data.

Pfam Protein domain
flat htd htd-cs hbayes-cs

L. Prec. Rec. F Acc. L. Prec. Rec. F Acc. L. Prec. Rec. F Acc. L. Prec. Rec. F Acc.
1 0.76 0.31 0.43 0.88 1 0.76 0.31 0.43 0.88 1 0.66 0.37 0.47 0.88 1 0.74 0.35 0.47 0.89
2 0.40 0.47 0.35 0.80 2 0.69 0.29 0.39 0.95 2 0.61 0.35 0.43 0.95 2 0.65 0.33 0.43 0.96
3 0.31 0.46 0.27 0.77 3 0.62 0.25 0.35 0.97 3 0.55 0.30 0.38 0.97 3 0.58 0.30 0.38 0.98
4 0.15 0.63 0.15 0.54 4 0.56 0.23 0.31 0.98 4 0.53 0.27 0.35 0.98 4 0.54 0.27 0.34 0.98
5 0.15 0.38 0.17 0.85 5 0.47 0.20 0.27 0.99 5 0.46 0.22 0.29 0.99 5 0.45 0.20 0.26 0.99

Sequence similarity
flat htd htd-cs hbayes-cs

L. Prec. Rec. F Acc. L. Prec. Rec. F Acc. L. Prec. Rec. F Acc. L. Prec. Rec. F Acc.
1 0.55 0.41 0.47 0.87 1 0.55 0.41 0.47 0.87 1 0.42 0.58 0.49 0.83 1 0.44 0.56 0.49 0.85
2 0.08 0.34 0.11 0.74 2 0.30 0.17 0.21 0.94 2 0.24 0.42 0.30 0.90 2 0.27 0.42 0.32 0.92
3 0.03 0.29 0.05 0.73 3 0.23 0.09 0.12 0.97 3 0.13 0.32 0.18 0.93 3 0.19 0.25 0.20 0.96
4 0.02 0.49 0.03 0.52 4 0.21 0.07 0.09 0.97 4 0.10 0.37 0.15 0.92 4 0.15 0.18 0.14 0.96
5 0.01 0.29 0.01 0.68 5 0.04 0.03 0.03 0.98 5 0.05 0.29 0.08 0.94 5 0.10 0.07 0.05 0.98
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Fig. 2. Hierarchical precision, recall and F-measure as a function of the cost modulator
factor in hbayes-cs ensembles. Left: Protein domain data (Pfam-1). Right: Pairwise
sequence similarity data (SP-sim). Horizontal lines refer to hierarchical precision, recall
and F-score of htd ensembles.

nodes of the FunCat hierarchy, level i, 2 ≤ i ≤ 5, to nodes at depth i. We can
observe that flat ensembles tend to have the highest recall, htd the highest
precision, while hbayes-cs and htd-cs tend to stay in the middle with respect
to both the recall and precision, thus achieving the best F-measure at each level.

The precision/recall characteristics of hbayes-cs ensemble can be tuned via
a single global parameter, the cost factor α = c−i /c

+
i (Sect. 2). By setting α = 1

we obtain the original version of the hierarchical Bayesian ensemble and by in-
crementing α we introduce progressively lower costs for positive predictions, thus
encouraging the ensemble to make positive predictions. Indeed, by increment-
ing the cost factor, the recall of the ensemble tends to increase (Fig. 2). The
behaviour of the precision is more complex: it tends to increase and then to
decrease after achieving a maximum. Quite interestingly, the maximum of the
hierarchical F-measure is achieved for values of α between 2 and 5 not only for
the two data sets reported in Figure 2, but also for all the considered data sets
(data not shown).

The improvement in performance of hbayes-cs w.r.t. to htd ensembles has
a twofold explanation: the bottom-up approach permits the uncertainty in the
decisions of the lower-level classifiers to be propagated across the network, and
the cost sensitive setting allows to favor positive or negative decisions according
to the value of cost factor. In all cases, a hierarchical approach (cost-sensitive or
not) tends to achieve significantly higher precision than a flat approach, while
cost-sensitive hierarchical methods are able to obtain a better recall at each level
of the hierarchy, without a consistent loss in precision w.r.t. htd methods —
Table 3. We can note for all the hierarchical algorithms a degradation of both
precision and recall (and as a consequence of the F-measure) by descending
the levels of the trees (Table 3). This fact could be at least in part due to
the lack of annotations at the lowest levels of the hierarchy, where we may
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have several genes with unannotated specific functions. Despite the fact that the
overall performances of hbayes-cs and htd-cs are comparable, we can note that
hbayes-cs achieves a better precision (Tab. 3). This is of paramount importance
in real applications, when we need to reduce the costs of the biological validation
of new gene functions discovered through computational methods. Finally, it is
worth noting that the accuracy is high at each level (at least with hierarchical
ensemble methods), but these results are not significant, considering the large
unbalance between positive and negative genes for each functional class.

4 Conclusions

The experimental results show that the prediction of gene functions needs a hi-
erarchical approach, confirming previous recently published findings [5, 2]. Our
proposed hierarchical methods, by exploiting the hierarchical relationships be-
tween classes, significantly improve on “flat” methods. Moreover, by introducing
a cost-sensitive parameter, we are able to increase the hierarchical F-score with
respect to the cost-insensitive version htd. We observed that the precision/recall
characteristics of hbayes-cs can be tuned by modulating a single global param-
eter, the cost factor, according to the experimental needs. On the other hand,
on our data sets the Bayesian ensemble hbayes-cs did not exhibit a significant
advantage over the simpler cost-sensitive top-down ensemble htd-cs (see Fig. 1
and Tab. 2). We conjecture this might be due to the excessive noise in the an-
notations at lower levels of the hierarchy. It remains an open problem to devise
ensemble methods whose hierarchical performance is consistently better than
top-down approaches even on highly noisy data sets.

In our experiments we used only one type of data for each classification task,
but it is easy to use state-of-the-art data integration methods to significantly
improve the performance of hbayes-cs. Indeed, for each node/class of the tree
we may substitute the classifier trained on a specific type of biomolecular data
with a classifier trained on concatenated vectors of different data [5], or trained
on a (weighted) sum of kernels [20], or with an ensemble of learners each trained
on a different type of data [21]. This is the subject of our planned future research.
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Abstract. In a typical Genetic Association Study(GAS) several hun-
dreds to thousands of genomic variables are measured and tested for as-
sociation with a given set of a phenotypic variables (e.g. a given disease
state or a complete expression profile), with the aim of identifying the
genotypic background of complex, multifactorial diseases. These highly
varying requirements resulted in a number of different statistical tools
applying different approaches either bayesian or non-bayesian, model-
based or model-free. In this paper we evaluate dedicated GAS tools and
general purpose feature subset selection(FSS) tools including our own
Bayesian model-based tool BMLA in a GAS context. In the evaluation
we used an artificial data set generated from a reference model with 113
genotypic variables that was based on a real-world genotype data.

1 Introduction

The research on genomic variability received much attention in the past years
as one of the most promising areas of genetics research, and several tools were
created to aid GAS analysis, particularly the discovery of gene-gene and gene-
environment interactions (for an overview see [7]).Earlier multivariate methods
designed to detect associations between genotypic variables and the target vari-
able in GAS include MDR (Multifactor Dimensionality Reduction [11]), a non-
parametric and genetic model-free data mining method, which can also be used
in conjunction with several filters such as ReliefF [23, 18], BEAM (Bayesian
Epistasis Association Mapping [27]), which computes the posterior probability
that each marker set is associated with the disease via a Markov chain Monte
Carlo method, and BIMBAM ( Bayesian IMputation-Based Association Map-
ping) which is based on the calculation of Bayes factors [24].

In this paper we compare the performance of these methods and our pre-
viously introduced Bayesian network based method in a typical GAS context
assuming that the primary goal is (1) the analysis of the relevance of input
variables (e.g. SNPs) w.r.t. the target variable (e.g. an indicator of a certain
disease); and (2) the exploration of the interdependencies of relevant variables.
Note that there are other applicable methods such as PIA (Polymorphism In-
teraction Analysis) [16], and an interaction search method based on external, a
priori networks [8] that were not included in this comparative study.
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Earlier, we presented the methodology of the Bayesian Multilevel Analysis
(BMLA) of the relevance of input variables in [4, 17]. BMLA enables the anal-
ysis of relevance at different abstraction levels: model-based pairwise relevance,
relevance of variable sets, and interaction models of relevant variables. In the
Bayesian model averaging framework each of these levels correspond to a struc-
tural property of Bayesian networks (i.e. Markov Blanket Memberships, Markov
Blanket sets, and Markov Blanket graphs respectively), and the essence of BMLA
is that the estimated posteriors of these properties can be used to assess the rele-
vance of input variables. Furthermore, Markov blanket graph posteriors provide
principled confidence measures for multivariate variable selection and facilitates
the identification of interaction models of relevant variables (for an extension
with scalable structural properties see [5]).

Due to its direct semantics, the Bayesian approach has an in-built automated
correction for the multiple testing problem (i.e. the posterior is less peaked with
increasing model complexity and decreasing sample size) compared to the hy-
pothesis testing framework.From another point of view, the Bayesian statistical
framework is ideal for trading sample complexity for computational complexity
(i.e. applying computation intensive model-averaging to quantify the sufficiency
of the data). Bayesian conditional methods e.g. using logistic regression or mul-
tilayer perceptrons, are widely used in biomedicine and in GASs (e.g., see [3, 13,
6, 22, 19]). Although the conditional approach is capable for multivariate analy-
sis and also copes with conditional relevance and interactions, the model-based
approach offers many advantages such as listed below.

1. Strong relevance. Clear semantics for the explicit, faithful representation of
strongly relevant (e.g. non-transitive) relations (cf. associations)

2. Structure posterior. In case of complete data the parameters can be analyt-
ically marginalized.

3. Independence map and causal structure. It offers a graphical representation
for the dependence-independence structure, (e.g. about interactions and con-
ditional relevance) and optionally for the causal relations [21, 9].

4. Multiple-targets. It is applicable for multiple target variables [5].

We investigated several probabilistic domain models with promising results
[4, 5], relying on these properties of our model-based framework.

2 Probabilistic concepts for GAS

Despite the centrality of “associations” in GASs the refinements of this con-
cept are hardly gaining acceptance in biomedicine, such as strong and weak
relevance (cf. non-transitivity and redundancy), conditional relevance (cf. pure
interaction), contextual relevance, multivariate relevance (cf. epistasis, complete
interaction model, haplotype-level association) or causal relevance. In the follow-
ing paragraphs, we provide a partial overview on these probabilistic concepts,
for a detailed description see [5].

We start with a pure probabilistic definition of relevance, which is defined in
a model-free, method-free, cost-free and data-free way [12].
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Definition 1 (Relevance) A feature (stochastic variable) Xi is strongly rel-
evant to Y , if there exists some xi, y and si = x1, . . . , xi−1, xi+1, . . . , xn for
which p(xi, si) > 0 such that p(y|xi, si) 6= p(y|si). A feature Xi is weakly rel-
evant, if it is not strongly relevant, and there exists a subset of features S′i of
Si for which there exists some xi, y and s′i for which p(xi, s

′
i) > 0 such that

p(y|xi, s
′
i) 6= p(y|s′i). A feature is relevant, if it is either weakly or strongly rele-

vant; otherwise it is irrelevant.

A probabilistic definition of relevance can also be given for a set of variables
X′ based on the concept of Markov blanket [20].

Definition 1 (Markov boundary). A set of variables X′ ⊆ V is called a
Markov blanket set of Xi w.r.t. the distribution p(V ), if (Xi ⊥⊥ V \X′|X′)p,
where ⊥⊥ denotes conditional independence. A minimal Markov blanket is called
Markov boundary. Its indicator function is denoted by MBSp(Xi,X′).

For the representation of probabilistic relevance, Bayesian networks (BNs)
are an adequate choice, since their structural properties are capable of serving
such a purpose [20]. They even allow the unambiguous BN representation of
relevant variables under a sufficient condition defined in Theorem 1.

Theorem 1. For a distribution p defined by Bayesian network (G, θ) the vari-
ables bd(Y, G) form a Markov blanket of Y , where bd(Y, G) denotes the set of
parents, children and the children’s other parents for Y [20]. If the distribution p
is stable w.r.t. the DAG G, then bd(Y,G) forms a unique and minimal Markov
blanket of Y , MBSp(Y ) and Xi ∈ MBSp(Y ) iff Xi is strongly relevant [26].

The induced (symmetric) pairwise relation MBM(Y, Xj , G) w.r.t. G between
Y and Xj is called Markov blanket membership. MBM(Y, Xj , G) indicates whether
Xj is in bd(Y,G) (i.e. Xj is an element of the Markov blanket set of Y ).

To include interaction terms into the dependency model of a given variable
we proposed the use of the Markov Blanket Graph (MBG) property, a.k.a. clas-
sification subgraph [1, 4].

Definition 2 (Markov Blanket Graph). A subgraph of Bayesian network
structure G is called the Markov Blanket Graph or Mechanism Boundary Graph
MBG(Y, G) of variable Y if it includes the nodes in the Markov blanket defined
by bd(Y,G) and the incoming edges into Y and into its children.

Finally, note that the definition of conditional relevance corresponds to the
concept of pure interaction.

Definition 3 (Conditional Relevance). Assume that X = X′ ∪C′ is rele-
vant for Y , that is (Y 6⊥⊥ (X′ ∪ C′)), and (X′ ∩ C′ = ∅). We say that X′ is
conditionally relevant if (X′ ⊥⊥ Y ), but (X′ 6⊥⊥ Y |C′).
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3 GAS Tools

To demonstrate the performance of BMLA compared to other available GAS
tools we present the results of a comparative study in Section 4. For this purpose
we selected two groups of tools that are capable of analyzing case-control type
GASs based on SNP measurements. The first group consists of dedicated Gas
tools, designed specifically for GAS analysis, and the second group consists of
general purpose feature subset selection methods that are applicable in this
GAS context. In the following sections we give a short description for the tools
dedicated for GAS analysis.

BEAM: Bayesian Epistasis Association Mapping 1.0 [27]: BEAM uses a
Bayesian partitioning model to select SNPs associated with a disease (i.e. the
target variable) and their interactions, and computes the posterior probability
that each set is associated with the disease via a Markov chain Monte Carlo
method. http://www.fas.harvard.edu/ junliu/BEAM

BIMBAM: Bayesian IMputation-Based Association Mapping 0.99 [24]: BIM-
BAM computes Bayes Factors for each SNP, and multi Bayes factors for com-
binations of SNPs under a linear or logistic regression of target variable(s) on
SNPs. http://stephenslab.uchicago.edu/software.html

Powermarker 3.25 [15]: PowerMarker contains a set of statistical methods for
SNP data analysis. It implements traditional statistical methods for population
genetic analysis and also some newly developed methods.
http://statgen.ncsu.edu/powermarker

SNPassoc 1.5.8 [10]: SNPassoc is an R package that provides tools for the
analysis of whole genome association studies. It allows the identification of SNP-
disease associations based on generalized linear models (depending on the se-
lected genetic inheritance model) and the analysis of epistasis.
http://www.creal.cat/jrgonzalez/software.htm

SNPMStat 3.1 [14]: SNPMStat is an association analysis tool for case-control
studies. The program performs a standard association analysis and provides
estimated odds ratios, standard error estimates, and Armitage trend tests.
http://www.bios.unc.edu/ lin/software/SNPMStat

Furthermore, we also investigated some general purpose feature subset selec-
tion tools, which are as follows:

Causal Explorer 1.4 [2]: Causal Explorer is a library of causal discovery
algorithms (such as HITON and IAMB) implemented in MatLab. The algorithms
are based on Bayesian Network learning theory, and can also be used for variable
selection for classification.
http://discover1.mc.vanderbilt.edu/discover/public/causal explorer

MDR: Multifactor Dimensionality Reduction 2.0.7 [11]: MDR is a nonpara-
metric and genetic model-free data mining method for detecting nonlinear inter-
actions among discrete genetic and environmental variables. The MDR software
also implements a couple of feature selection algorithms to aid the selection of
relevant variables. http://www.multifactordimensionalityreduction.org
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4 Results

We demonstrate the capabilities of BMLA and compare its performance with
other GAS tools (presented previously) on an artificial data set, which consists of
5000 complete random samples generated from a reference model containing 113
SNPs (genomic variables) and a clinical variable Asthma. The reference model
was learned from a real data set containing 1117 samples, and the 113 SNPs
were selected from the asthma susceptibility region of chromosome 11q13 [25].

The clinical variable Asthma served as the target variable, and the aim of
the comparative study was to identify all the relevant variables w.r.t. this target
variable. There are 11 SNPs in total that are relevant and therefore are part of
the MBG of Asthma (see Fig. 1).

Fig. 1. Markov blanket of the reference model containing all relevant SNPs

Out of the 11 relevant SNPs, 5 are in direct relationship with Asthma (i.e.
4 interacting children: SNP11, SNP23, SNP64, SNP109 and 1 single parent:
SNP110), and the remaining 6 are interaction terms (SNP17, SNP27, SNP61,
SNP69, SNP81, SNP85). The performance of the tools was assessed by com-
paring their result set of relevant variables against the 11 relevant SNPs of the
reference model. In order to measure the effect of varying sample size (i.e. the
sufficiency of the data) the computations were run on data sets with sample sizes
500, 1000 and 5000, where the smaller data sets are subsets of larger ones.

Fig. 2 presents the sensitivity for selecting relevant variables for each of the
tested dedicated GAS methods. Apart from the overall sensitivity, the sensi-
tivity for identifying relevant variable subgroups (i.e. direct relationships and
interactions) is also shown. The result confirms preliminary expectations, that
is direct relationships are discovered by almost all of the methods, while inter-
action terms are ignored by most. Fig. 3 presents the sensitivity measures for
the tested general purpose feature subset selection (FSS) methods. The results
indicate that the examined FSS methods identify interactions at a significantly
higher rate than dedicated GAS tools. Note that due to space limitations only
the results gained from the largest data set are shown.

Table 1 shows the sensitivity, specificity and accuracy of the five best per-
forming methods using the complete data set of 5000 samples. Whereas there is
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Sensitivity of GAS Tools
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Fig. 2. The performance of dedicated GAS tools: Sensitivity for selecting relevant vari-
ables. The figure indicates the sensitivity for identifying all associations, and the two
main subtypes separately, i.e. direct relationships and interactions using data sets con-
sisting of 500, 1000 and 5000 samples. Methods are denoted as follows: PMarker -
PowerMarker, MSTAT - SNPMStat, ASSOC-L - SNPAssoc using a log-additive inher-
itance model, Assoc-D - SNPAssoc using a dominant inheritance model.

only a slight difference in terms of specificity among the methods, the difference
in sensitivity is much more significant.

5 Discussion

The results indicate that the general purpose FSS tools significantly outper-
formed the tested GAS tools in terms of identifying interactions and conditional
relevance.

Basically none of the GAS tools have identified any of the 6 interaction terms
of the reference model successfully. Although BEAM produced a larger than zero
posterior for 3 interaction terms (using 5 chains, 106 and 5 ∗ 106 steps for burn-
in and length respectively), these were not larger than 0.3 (and thus they were
ignored). On the other hand, direct associations were identified by most of the
methods correctly. The variation of sensitivity seen on Fig. 2 is due to SNP110,
which could only be identified from the data set of 5000 samples.

As it can be seen from Table 1, the methods producing the best results all
belong to the FSS group. Among them, the best performance was achieved by
BMLA using the Cooper-Herskovits (CH) parameter prior. Note that only MBM
based results are reported in the paper, because they alone successfully identi-
fied the relevant interaction terms of the target variable. However, in several
real-world domains the analysis based on MBM probabilities is not enough to
identify all relevant variables, and the investigation of MBS properties is re-
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Sensitivity of general purpose FSS methods
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Fig. 3. The performance of general purpose FSS tools: Sensitivity for selecting relevant
variables. The suffixes for the methods are as follows: G2 - based on G2 statistic, MI
- based on mutual information, Kn - uses a local test set size of n. Note that Turf,
Relief, Chi and Odds denote filters used for variable selection with MDR.

quired. Also note, that though the MBM probabilities are pairwise descriptors,
they are generated by Bayesian model averaging, therefore they are normatively
multivariate. The second best method was HITON (with several different se-
tups), and the third was MDR in conjunction with its filters ReliefF and TurF.
Note that the performance of MDR highly depends on the used filter method,
since the exhaustive evaluation of all variables is frequently not feasible. The
other FSS methods however identified only a portion of interactions, and missed
even some of the direct associations.

On the other hand, the performance of BMLA comes at a high computational
cost. On an Intelr CoreTM2 CPU 6700 @ 2.66GHz the execution time varied
between 5.5 to 7 hours (depending on the data set size) in contrast to all other
methods, amongst which the longest execution time was 39.8 minutes. However,
with the aid of improving parallelization techniques the execution time of BMLA
may significantly be shortened.

6 Conclusion

The presented comparative study has shown, that general purpose FSS tools can
be successfully applied in partial genetic association studies and for the purpose
of detecting interactions, particularly conditional relevance, among relevant vari-
ables, they perform better than dedicated GAS tools. The results also indicated,
that BMLA is an adequate choice for evaluating GASs. Its Bayesian network
based approach allowed an excellent reconstruction of the reference model, i.e.
the identification of relevant variables either in a direct association or in an
interaction with the target variable.
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Table 1. Sensitivity, specificity and accuracy of the five best performing methods with
different parameter settings. The listed methods include BMLA - using two different
parameter priors, HITON-MB - with G2 statistic and a varying local test set size
k, MDR - with TurF and RelieF as two pre-filters, interIAMB - based on mutual
information(MI), and the Koller-Sahami algorithm(KS).

Method Sensitivity Specificity Accuracy

BMLA-CH MBM 1 0.99 0.9912
BMLA-BD MBM 0.9231 1 0.9912
HITON-MB(G2, k=1) 0.7692 0.98 0.9558
HITON-MB(G2, k=2) 0.7692 0.99 0.9646
HITON-MB(G2, k=3) 0.6923 0.99 0.9558
MDR-TurF 0.6154 0.97 0.9292
MDR-Relief 0.5385 0.96 0.9115
interIAMB(MI) 0.4615 0.96 0.9027
KS(k=3) 0.4615 0.97 0.9115

Finally, note that the capabilities of BMLA can only be fully utilized when
the analysis based on MBS or k-MBS structural properties is also carried out [5].
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Abstract. In this study, we analyzed the combination of the ChIP-seq
and the transcriptome data and we integrated these data into signaling
cascades. Integration was realized through a framework that was hybrid
of data-driven and model-driven approaches. An enrichment model was
constructed to evaluate signaling cascades which resulted in specific cel-
lular processes. We used ChIP-seq data and microarray data from public
databases which were obtained from HeLa cells under oxidative stress
having similar experimental setups. The genes associated with OCT1
transcription factor were identified based on ChIP-seq data. Both ChIP-
seq and array data were analyzed by percentile ranking for the sake of
simultaneous data integration on specific genes from signaling cascades.
Signaling cascades from KEGG pathway database were subsequently
scored by taking sum of the individual scores of the genes involved within
the cascade and this score information transferred to en route of the sig-
naling cascade to form final score. Furthermore, we evaluated oxidative
stress effected cellular processes based on the final scores. We believe
that signaling cascade model based framework that we describe in this
study is applicable to other transcriptome data analysis.

Key words: evaluation of signaling cascades, chip-seq, gene expression

1 Introduction

Microarray experiments enable researchers to access the transcriptome infor-
mation related to the state of several thousands of genes under a particular
experimental condition. Traditional analysis methods for microarray data, out-
put a list of significant genes specific to the performed experiments. In order
to associate the list of genes to a specific cellular process secondary tools and
databases are used. Therefore, research focuses on the analysis of the biological
pathways rather than individual genes [1]. Several gene prioritization methods
attempt to determine the similarity between candidate genes and genes known
to play a role in defined biological processes or diseases [2–5]. Therefore, it is
clear that available data from multiple sources (e.g. Gene Ontology annotations,
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protein domain databases, biological networks, published literature, gene ex-
pression data etc.) would enrich the analysis. A variety of methods have been
developed to analyze and visualize microarray data by considering known bio-
logical networks [6–10]. These methods identify significant functional terms or
biological pathways by applying several statistical significance tests. They also
overlay gene expression data into known pathways to visualize experiment spe-
cific gene regulations [11, 12]. Additionally, these tools apply graph theory and
calculate significance scores on the pathways. Nevertheless, these tools depend
on the primary significant gene lists.

Chromatin ImmunoPrecipitation (ChIP) combined with genome resequenc-
ing (ChIP-seq) technology provides protein DNA interactome data. ChIP-seq
technology is expected to be popularly used for the analysis of gene expression
signatures, as it happened with microarray technology. Transcription factors
(TFs) bind to specific DNA sequences and turn transcription of target genes on
or off. In order to explore accurate prediction of pathway activities, ChIP-seq ex-
periments provide detailed knowledge about target genes. ChIP-seq experiments
and computational analysis methods in literature have been at initial stages [13].
Although there is a few number of early stage analysis tools for ChIP-seq data,
secondary gene annotation methods should also be integrated like in the case of
microarray data analysis. Therefore, we considered to integrate ChIP-seq and
gene expression experiments to identify target genes responsible of a specific
cellular process.

In this study, we analyzed ChIP-seq and gene expression data together by
applying computational methods and mapped gene scores to biological signaling
cascades. After combining ChIP-seq and gene expression profiles, we constructed
an enriched model to evaluate the signaling cascades under the control of specific
biological processes (Figure 1).

2 System and Methods

2.1 Data Processing

Experimental data sources of this study were obtained from NCBI GEO database.
We selected ChIP-seq and microarray data from GEO datasets (GSE14283,
GSE4301). We used ChIP-seq data by Kang et al. which aimed to identify tran-
scription regulation role of OCT1 on HeLa cells under oxidative stress [14]. Raw
ChIP-seq data of OCT1 protein contains approximately 3.8 million reads. Ini-
tially, significant peak regions in raw data were explored by applying peak detec-
tion method of CisGenome tool [15]. Peak detection method scans the genome
with a sliding window (w=100, s=25) and identifies regions with read counts
greater than 10 reads for significant binding regions. We obtained 5080 putative
peak regions over entire human genome. In order to compute significancy of each
peak region, we set a percentile rank value for each peak region by considering
total number of reads involved in that region.

ReadRank(r) =
cfl + 0.5(fr)

T
(1)
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Fig. 1. Process diagram of the proposed method. The integration stage combines ChIP-
seq and transcriptome data to obtain scores of genes related with OCT1 transcription
factor. In the next stage, signaling cascades activated by transcription of OCT1 are
identified by exploring scores of each signaling cascade.

where cfl is the cumulative frequency for all scores lower than the score of the
peak region r, fr is the frequency of the score of peak region r, and T is the
total number of peak regions. ReadRank(r) score ranges from 0 to 1. After
identification of OCT1 high quality peak regions, we mapped to the TSS of the
genes within a region ±10000 bp. Total number of neighboring genes associated
with high quality peak regions was 260.

The microarray data used in the study was also obtained from HeLa cells
under oxidative stress condition (Murray expression data) [16]. We calculated
fold-change (gene expression log ratio) of two channels (red, green) for control
and oxidative stress experiments.

FoldChange(x) = log2(
ch2x

ch1x

) (2)

where ch1x and ch2x represent the mean value of channel 1 and channel 2 of gene
x, respectively. We observed that half of the genes have very low fold changes
(less than 0.2 fold). In order to assign a rank value of the gene expression, we
applied Equation 3 which involves the same computation with ReadRank.

ExpRank(x) =
cfl + 0.5(fx)

T
(3)

where cfl is the cumulative frequency for all fold-change values lower than the
fold-change value of the gene x, fx is the frequency of the fold-change value of
gene x, and T is the total number of genes in microarray chip. If the magnitude
of fold change is very close to 0, the rank value is close to 0. Otherwise, rank
value of a gene varies between 0 and 1 according to magnitude of its fold change.
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2.2 Integration of ChIP-seq and Microarray Data

The gene set extracted from OCT1 ChIP-seq data and Murray expression data
for a gene were associated by taking their weighted linear combinations.

Score(x) = cchipReadRank(x) + cexpExpRank(x) (4)

where ReadRank(x) is the ChIP-seq read rank value of gene x given by Equation
1, ExpRank(x) is the expression rank value of gene x indicated by Equation 3,
and cchip and cexp are the coefficients of two data sources. In order to consider
their effects equally, 0.5 was assigned to both cchip and cexp.

2.3 Scoring of Signaling Cascades

In order to assign scores to signaling cascades which control biological process
we used KEGG pathway as the model. For this purpose, we converted selected
KEGG pathways into the graph structures by using KGML files. A node of
the graph represents gene product, chemical compound or biological process
represented by other KEGG pathways. The edges represent the relations (i.e.
activation, inhibition) between the nodes. We enumerated each signaling cascade
from a specific KGML file that leads to biological process of the selected pathway.
If the edge between two nodes is activation, the total score of that node is
transferred directly. If the edge is inhibition, the total node score is transferred
with a negative value (Figure 2). If a gene, involved in a pathway, has no score,
the value of Score(x) was set to zero. In order to consider processing order of
the genes in actual pathway map, we performed score computations in the order
of cascading nodes. Total score of a signaling cascade was computed by applying
that score flow mechanism up to the goal node: biological process. Algorithm 1
describes general steps of the biological score computation.

Total score of a signaling cascade P is computed by taking sum of all possible
biological processes under the control of P .

Enrichment(P ) =
N∑

s=1

outputScore(s) (5)

where outputScore(s) is total path score of the biological process s, N is the
total number of biological processes under the control of P . The average score
of the signaling cascade P was computed to discover oxidative stress effected
signaling cascades and assign a significance score to them.

AverageEnrichmentScore(P ) =
Enrichment(P )

N
(6)

where Enrichment(P ) is the total score of the signaling cascade P , N is the
total number of genes involved in that signaling cascade.
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Algorithm 1 : Computing Score of Signaling Cascades
Input: Graph P

¯
, has nodes and edges arrays

Score: indicates self score of each node given by our method
outputScore: contains output edge score of each node
Initialization:
Apply Breadth-First Search algorithm
Extract initialization (ancestor of P

¯
) nodes: initialNodes = start node(s) of P

¯
otherNodes = nodes \ initialNodes
Score Computation:
for i = 1 to length(initialNodes) do

outputScore[initialNodes[i]] = Score[initialNodes[i]]
end for
for j = 1 to length(otherNodes) do

ancestorNodes = ancestor node(s) of otherNodes[j]
outputScore[j] = Score[j]
for k = 1 to length(ancestorNodes) do

e = E(k, j) {the edge between ancestorNodes[k] and otherNodes[j]}
if type of e is activation then

sign[k] = 1 {assign weight of activation edge}
else

sign[k] = −1 {assign weight of inhibition edge}
end if
outputScore[j]+ = outputScore[k] ∗ sign[k] {sum up weight of incoming edge}

end for
if outputScore[j] < 0 then

outputScore[j] = 0 {negative score is originated by only inhibition edges}
end if

end for
Output: outputScore of outcome biological processes in graph P

¯
.

3 Results and Discussion

3.1 Evaluation of Signaling Cascades

After assigning gene scores by integrating rank scores from ChIP-seq and array
data, biological annotation of these gene scores was performed by evaluating
several signaling cascades obtained from KEGG database. Mapping gene scores
onto pathways can provide the determination of specific regulation motifs driving
different responses in several signaling cascades. An example about this pathway
enrichment is illustrated in Figure 2. A sub-cascade represented in this figure
starts with the initial activation nodes of Jak-STAT signaling cascade and ends
with the goal: Apoptosis biological process. We attributed gene scores on the
nodes and reflected that information to en route of the signaling cascade. Thus,
the final biological process Apoptosis under the control of Jak-STAT signaling
cascade was scored. The total score for Apoptosis biological process computed
by oxidative stress expression data (Figure 2-A) was higher than that of the
control (Figure 2-B).
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Fig. 2. Assignment of combined ChIP-seq and array scores to a sub-cascade (Apoptosis)
leading under oxidative stress (A) and control experiment (B). The number on each
node (gene) represents self-score of the gene. Edge weights are computed by the sum
of node scores. Red and green edges represent activation and inhibition properties,
respectively.

In order to highlight the novelties of our model driven framework for tran-
scriptome data analysis we also applied kegArray tool [17] to Murray oxidative
stress data over Jak-STAT signaling cascade (Figure 3). Several tools, similar to
kegArray, map expression data over pathways; however, they could not assign
a score to the biological end process. On the other hand, our method provides
a quantitative measure to evaluate biological activity of a pathway in a specific
process.

We applied our framework to 4 KEGG pathways having 15 signaling cas-
cades: Jak-STAT signaling, TGF-β signaling, Apoptosis, and MAPK signaling
pathways. For all pathways, oxidative stress data obtained higher scores with
respect to control experiment (Table 1). Control experiment obtained 4, 18, 11,
and 20 % lower scores compared to oxidative stress scores in Jak-STAT signal-
ing, TGF-β signaling, Apoptosis, and MAPK signaling pathways respectively.
When the average scores of outcome biological processes are compared, Apopto-
sis biological process in Jak-STAT signaling cascade produced the highest score,
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224.73, by using oxidative stress experiment. Thus, we can conclude that the
most effected biological process under oxidative stress condition and transcrip-
tion of OCT1 protein is Apoptosis biological process.

Fig. 3. Mapping of Murray oxidative stress data to Jak-STAT signaling cascade by us-
ing kegArray tool. Green and orange color indicate down-regulation and up-regulation
values, respectively.

4 Conclusion

In general, current approaches which integrate transcriptome data to molecular
pathways are either data driven or model driven. In this study, we applied a
hybrid approach which integrates large scale (i.e. transcriptome, ChIP-seq) data
to quantitatively assess the weight of a signaling cascade under the control of
a biological process. In our framework signaling cascades act as models. Our
hybrid approach equally utilizes the signaling cascade intrinsic properties (i.e.
edge and node specifications) and scores genes through large scale data.

Pathway enrichment is typically applied on the nodes of the pathways. The
enriched pathways can be visualised as nodes and edges so that the user would
choose based on observed highlighted nodes. However, in our study we computed
the scores of activated processes. We used ChIP-seq data in order to further en-
rich scores of the specific genes. Therefore, we believe that, if available, ChIP-seq
and other large scale data can be further integrated into this framework. We at-
tribute integrated data on the nodes and reflect this information to en route of
the pathway as scores. These scores reflect the current activity of analyzed path-
way. Our framework in its current state can be applied to directed acyclic graphs.
Actually, biological signaling cascades also act in acyclic directed manner, since
the signal flow is through membrane to nucleus or vice versa.
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KEGG ID Biological Process
Control Sample Oxidative Stress

Total Score Average Score Total Score Average Score

hsa04630

Apoptosis 5633 217.80 5843 224.73
Cell Cycle 5447 209.50 5558 213.76
Ubiquitin mediated proteolysis 2587 99.5 2754 105.92
MAPK signaling 1336 51.38 1358 52.23

hsa04350

Cell Cycle 158 2.92 166 3.07
MAPK signaling 44 0.81 76 1.40
Apoptosis 52 0.96 66 1.22

hsa04210

Survival 2222 37.66 2762 46.81
Apoptosis 2668 45.22 2709 45.91
Degradation 1984 33.62 2188 37.08

hsa04010

Proliferation & differentiation 19346 172.73 22315 199.24
Cell Cycle 2533 22.61 3771 33.66
Apoptosis 1652 14.75 2949 26.33
p53 signaling 832 7.42 1135 10.13
Wnt signaling 185 1.65 288 2.57

Table 1. Assigned scores of hsa04630 Jak-STAT signaling, hsa04350 TGF-β signaling,
hsa04210 Apoptosis, hsa04010 MAPK signaling pathways for control and oxidative
stress experiments. Total score indicates overall score of each biological process. Total
score is divided by the amount of nodes of the analyzed cascade to obtain the average
score.

Currently used pathway analysis tools do not assign any roles to genes which
are not differentially expressed for the enrichment. However our hybrid approach
considers signal relaying molecules even though they are not differentially ex-
pressed. We believe that our hybrid approach better represents a biological pro-
cess rather than ignoring a gene product which is not differentially expressed
but present in the biological process.
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Abstract. The mechanism by which spatial patterns are established
during embryonic development is usually modelled as passive diffusion
of morphogen proteins translated from maternally deposited messenger
RNAs. Such diffusion models assume a constant supply of morphogens
at the source throughout the establishment of the required profile at
steady state. Working with the bicoid morphogen which establishes the
anterior-posterior axis in the Drosophila embryo, we note that this con-
stant source assumption is unrealistic since the maternal mRNA is known
to decay after a certain time since egg laying. We numerically solve the
reaction diffusion equation for one dimensional morphogen propagation
and match the resulting solution to measured data. By minimising the
squared error between model outputs and measurements published in
the FlyEx database, we show how parameters of diffusion rate, mRNA
and protein decay constants, and the onset of maternal mRNA decay
can be assigned sensible values.

Key words: Morphogen diffusion, mRNA degradation, Parameters es-
timation

1 Introduction

Passive diffusion of a class of molecules known as morphogens as a mechanism
that helps to establish spatial patterns of gene expression during embryonic de-
velopment was proposed several decades ago by Turing [1]. Several morphogen
molecules have been discovered since his postulation. In the fruit fly Drosophila
melanagaster, the maternally deposited gene Bicoid establishes the first mor-
phogen gradient along the anterior posterior axis. Properties of the steady state
profile set up by such diffusion include precision of a decision threshold in the
presence of variabilities in the form of embryo length, amount of maternally
deposited mRNA etc. Several authors have analysed such formation of develop-
mental precision [2, 3].

Bergmann et al. [4] have analysed properties of the spatio-temporal mor-
phogen profile prior to the establishment of a steady state. They argue that
desirable properties of the steady state profile are also realised in the pre-steady
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state region, thereby enabling reliable downstream gene expression early in the
nuclear cleavage cycles.

While such passive diffusion is a widely of how a concentration gradient is
established, the topic may have to be re-visited in the light of recent experimental
findings. Hecht et al. [5] offer an alternate model based on cytoplasmic flow,
motivated by the argument that the quantitative properties of the morphogen
profiles established require higher values of diffusion constant than have been
experimentally measured recently [6].

In this paper we consider an enhancement to the passive one dimensional dif-
fusion model, hitherto ignored in the literature. We incorporate a more realistic
model of the morphogen source. In classical analysis using the diffusion model,
the source is assumed to provide a constant supply of morphogen from the be-
ginning until a steady state profile is established at cleavage cycle 14, which
takes place about 130 mins from the laying of the egg. This is an unrealistic
assumption, since the maternal mRNA should be expected to decay. While lit-
erature evidence on this is not quantitative, there is suggestion, for example see
[7], that the maternal bicoid starts to decay rapidly from cleavage cycle 12 on-
wards. In this work we explicitly model the source as a constant supply followed
by exponential decay and compute the solution to the reaction diffusion system.
In Flyex Database [8], bicoid integrated data in nuclear cleavage cycle 14A in
one- dimension is used as measured data. Cycle 14A is approximately 50 mins
in duration and is divided into 8 equal temporal classes of 6.5 mins duration [9].
By matching the resulting profile to available data from the FlyEx database [8],
during cleavage cycle 14, we estimate parameters of the diffusion model, includ-
ing the point in time maternal mRNA decay begins. By incorporating a realistic
source model, our analysis completes the passive model and sets the framework
for parameter estimation including uncertainties, as more data becomes avail-
able. An important finding of the study is that matching model output to data
in the post-peak profile. We recover parameter values typically recommended by
other authors for desirable profiles in the steady and pre-steady state profiles,
which, to some extent, is a validation of our model.

2 Model and Implementation

The reaction diffusion equation used to model morphogen is given by

∂

∂t
M(x, t) = D

∂2

∂x2
M(x, t) − τ−1

p M(x, t) + S(x, t),

where M(x, t) is the morphogen concentration as a function of space and time.
D, the diffusion constant, τp, the half-life of the morphogen protein and S(x, t),
the source at the anterior end. The usual assumption in solving this model is
that the sourse is constant:

Scon = S0δ(x)Θ(t)
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where S0 is the production rate, δ(x) is the Kronecker delta function and Θ(t) is
Heaviside step function. Thus we have a point source at x = 0, the anterior pole
which is zero for t < 0 and has a constant magnitude from time zero onwards.
This equation can be easily solved analytically using the method proposed in
[4].

Here, we work with a source model which has a constant part during which
the maternal mRNA is kept stable, followed by an exponentially decaying part,
due to maternal mRNA decaying from about cleavage cycle 12 of the developing
embryo. This source is modelled as follow:

Scom = S0δ(x) (Θ(t) −Θ(t− t0)) + S0δ(x) Θ(t− t0) exp
{
− t− t0

τm

}
While the solution to the reaction diffusion equation with such a source may

also be tractable analytically, we instead chose the easy option of numerically
integrating them with the MATLAB toolbox pdepe. We obtain solutions with
the constant source up to time t0, then with an exponentially decaying source
starting at t0, and combined the solutions by linear superposition, taking care
to match the boundary conditions.

3 Results and Discussion
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Fig. 1. Widely used models of bicoid diffusion assume a constant source, leading to
an exponentially decaying steady state model. The left panel is an intensity profile of
morphogen concentrations jointly in time and along the length of the embryo. The right
panel shows the constant supply of bicoid protein at the anterior end of the embryo.
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Fig. 1 shows the solution to the reaction diffusion model of morphogen prop-
agation, where the source bicoid supply is a constant. This is the widely used
model which at steady state sets up an exponential profile. We obtained this so-
lution by numerically integrating the differential equation using pdepe Toolbox
in MATLAB with D = 1.7 µm2/s and τp = 104 mins. Fig. 2 shows the solution
to the diffusion model, which we propose as being more realistic, in which the
source is a combination of a constant supply followed by an exponential decay.
As expected, the solution to this system, evaluated numerically using the pdepe
Toolbox, sets up a spatially decaying profile which subsequently decays to zero.
For this simulation, D and τp are set to the same values as above while the decay
rate of maternal bicoid mRNA was set as τm = 1/3 τp. Following [7], mRNA
degradation was set to start at 120 mins.

Bicoid concentration with constant−decaying source
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Fig. 2. Space-time concentration of bicoid with the more realistic model (right) that is
constant for a certain period of time, followed by exponential decay as the maternally
deposited bicoid mRNA is degraded. Precisely when the decay of maternal mRNA
begins is a parameter to be optimised.

Bergmann et al. [4] have analysed the sensitivity of a morphogen boundary
to the source proteins dosage. Fig.3 shows similar boundary shift sensitivities at
pre-steady state, peak profile and post-peak profile. We note that properties of
the boundary observed in [4], also appear to hold for much larger in time (i.e.
post-peak profile).
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Fig. 3. Intensity comparison with different source production rate. Original intensities
correspond to blue lines while red lines show the intensities with 2-fold increase in
production rate. (a) shows bicoid concentration in pre-steady state. (b) is in steady
state and (c) is in post-peak state.

3.1 Matching Parameter Values to Data

We used intensity profiles published in the FlyEx database [8] to estimate what
sensible parameters of the model were. Throughout this paper we used the
squared error between model output and measured intensities to evaluate er-
ror in estimating the parameters.

E =
T2∑

t=T1

L∑
x=1

{M (x, t) − Md (x, t)}2
,

where T1 and T2 were the boundaries of cleavage cycle 14A for which data,
Md(x, t), was available at eight uniformly sampled time points. Cleavage cycle
14A was of specific interest, because, it is during this period, that cellularization
sets in and the bicoid profile established begins to decay due to the decay of the
source mRNA and the diffused protein.

Fig. 4 shows intensities of morphogen output by the model with a constant
source followed by an exponentially decaying source, and the measured data
from FlyEx. It shows that a good match to the measured data is obtainable
in the post-peak stages of morphogen profile, jointly in space and time. To the
best of our knowledge, these stages have not attracted interest in the literature,
and the popular model with a constant morphogen source is clearly incorrect in
these stages.

Fig. 5 shows the variation in modelling error as functions of the four parame-
ters (D,t0,τp and τm), where we have held three of the four constant at their best
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Fig. 4. Comparison of model based and measured data of bicoid intensities

estimates found in the literature and varied the fourth. The resulting error is
unimodal with respect to each of the parameters, and the corresponding minima
are marked in red on the figures.

3.2 Diffusion Constant

Broadly, the optimum values are in agreement with ranges specified in the lit-
erature. Bergmann et al. [4] suggest a value for diffusion constant in the range
0.3 ∼ 3 µm2/s. When matching the post-peak decay phase, as we have done
here, the optimum value obtained is D = 1.8µm2/s.

3.3 When does Maternal mRNA begin to decay?

There is very little indication in the literature as to when maternal mRNA begins
to decay. Surdej et al. [7] suggest that maternal mRNA is stable during first 2
hours and then decays rapidly between 2 and 3 hours after fertilization. Here
we find that when mRNA starts to degrade at 120 mins the difference between
simulated and measured data is minimum. When degradation starts later than
140 mins or earlier than 120 mins, the error increases significantly. If mRNA
decay starts much later, the model tends to be the one with constant source and
the error is high.

3.4 Messenger RNA and Protein Half-lives

To the best of our knowledge there aren’t reliable published measurements of
protein decay rates for bicoid. In order to confer desirable pre-steady state prop-

60 MLSB’09: W. Liu and M. Niranjan



erties to morphogen profiles, Bergmann et al. [4] suggested values for τp should
be higher than the range 65 ∼ 100 mins. The motivation in their model was the
observation that some gap gene expressions were observable prior to the estab-
lishment of steady morphogen profiles [10]. Our best estimate of protein decay
time, matching in the post-peak region is 111 mins, and is in agreement with
what was required for desirable pre-steady state properties.

Our estimate of bicoid mRNA half-life is 29 mins, which is nearly 1/3 of bicoid
proteins decaying time from our model. This satisfies the observation that, in
general mRNA decays much faster than the corresponding protein. [7] suggest a
decay time constant of less than 30 mins, but with no experimental evidence to
support it.

Fig.6 shows the variation in modelling error as a function jointly in two of
the variables: diffusion constant and onset of maternal mRNA decay. This, too,
is unimodal and achieves a minimum in the range of sensible values as discussed
earlier.
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Fig. 5. Modelling errors as functions of the four parameters: diffusion constant(D),
bicoid protein half-life (τp), the time of maternal mRNA decay onset (t0) and mater-
nal bicoid mRNA half-life (τm). The errors are computed during the eight stages of
developmental cycle 14A, holding three of the four parameters at their best estimates
from literature and varying the fourth.
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3.5 Finding Optimal Values for all the Parameters

In the previous sections, we discussed the parameter estimation by holding three
of the four parameters at their best estimates from literature and changing the
fourth. We also searched for the best combination of parameter values simul-
taneously on a regular grid. This search resulted in values closed to the results
obtained previously: the diffusion constant D = 1.83µm2/s, mRNA starts to
decay t0 = 118 mins, mRNA half-life τm = 28.4 mins and bicoid protein half-life
τp = 120 mins.

4 Conclusion

Widely used models of how a profile of morphogen is established assume passive
diffusion with a constant supply of morphogens at the source. The assumption
of a constant source is unrealistic for a number of reasons. In this paper we have
addressed a particular weakness of these models, i.e. decay of the source mRNA
after a certain time, using the morphogen bicoid as an example. By matching
the resulting model profile of bicoid to measured profile taken from [8], we show
early results on how parameters of the diffusion model can be calculated. In
the present study we have used single measurements of profiles from the FlyEx
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database, which do not have uncertainties of the measurements quantified. The
next step in this work would be to acquire uncertainties in bicoid profile measure-
ments, arising from a distribution across a population of embryos, formulate the
estimation problem in a probabilistic setting, and carry out posterior inference
along the lines in [11].
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Abstract. Machine learning methods that can use additional knowledge
in their inference process are central to the development of integrative
bioinformatics. Inclusion of background knowledge improves robustness,
predictive accuracy and interpretability. Recently, a set of such tech-
niques has been proposed that use information on gene sets for super-
vised data mining of class-labeled microarray data sets. We here present
a new gene set-based supervised learning approach named SetSig and
systematically investigate the predictive accuracy of this and other gene
set approaches compared to the standard inference model where only
gene expression information is used. Our results indicate that SetSig
outperforms other gene set approaches, but contrary to earlier reports,
transformation of gene expression data to the space of gene set signa-
tures does not result in increased accuracy of predictive models when
compared to those trained directly from original (not transformed) data.

1 Introduction

Methods to incorporate additional domain knowledge in the model inference
process have from its early ages been central to machine learning research. Also
referred to as background knowledge, its inclusion should increase model stability,
predictive accuracy and interpretability.

In systems biology the sources of domain knowledge abound. They include
information on gene structure and annotation, protein interactions, tissue lo-
calization, biological pathways, literature references, and other. From the onset
of high-throughput data acquisition, bioinformatics has striven to include such
additional knowledge in the discovery process. Consider, for instance, genome-
wide gene expression analysis. From the first reports on utility of computational
techniques such as clustering, the relevance of results was confirmed using func-
tion annotations [1]. Later, the procedure was formalized in enrichment anal-
ysis, where knowledge on groups of related genes, called gene sets, was used
to identify groups including either over or under-expressed genes under specific
experimental conditions [2]. Reporting enriched gene sets, rather than a list of
differentially expressed genes, should yield stability, improve robustness across
data sets of the same kind coming from different sources (labs), and help us in
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gaining a deeper understanding of the underlying processes due to identification
of affected pathways [3].

Gene set enrichment is by definition an explorative data analysis technique.
If the task in genome-wide microarray analysis is class prediction, such as tu-
mor classification, diagnosis and prognosis, standard supervised machine learn-
ing techniques should be used instead [4]. Early efforts in this domain directly
applied machine learning to class-labeled expression data [5] and used gene ex-
pressions as features. Recently, a number of techniques have been proposed to
incorporate the knowledge on gene sets in the model inference process, where
each individual observation (e.g. tissue sample) should be described by features
(signatures) that correspond to gene sets. These are computed from expression of
its constituents (genes) and are then used for model inference. At present, these
approaches can be classified based on whether they use class information when
computing the signatures. Approaches that do not use class information include
methods that compute average gene set expression [6], use principal component
analysis (PCA) [7] or singular value decomposition [8, 9], while domain-enhanced
analysis with partial least squares [7], PCA with relevant gene selection [10], ac-
tivity scores based on condition-responsive genes [11], averages of expression
values of genes supporting the gene set score [12] and ASSESS [13] do.

Similarly to gains in enrichment analysis, gene sets-based inference of predic-
tive models should improve the stability and predictive accuracy. Interestingly,
however, this has not yet been systematically tested across larger collections of
data sets and across different methods. Also, there is a lack of a thorough com-
parison of such approaches with standard machine learning from the entire set
of genes.

In the paper, we demonstrate the stages of development of a gene set-based
supervised learning approach in crafting our own one (SetSig), and then report
on systematic investigation to determine if this and five other knowledge-based
techniques produce more accurate predictive models. Our test-bed incorporates
30 publicly available data sets, and uses standard evaluation and modelling pro-
cedures from supervised data mining. The results of our analysis are quite sur-
prising and contradict initial reports on the superiority in accuracy of gene set-
based predictive modelling [11–13].

2 Methods

2.1 Data sets

The study considered 30 cancer gene expression data sets from the Gene Expres-
sion Omnibus (GEO) [14]. All data sets have two diagnostic classes and include
at least 20 samples, where each class was represented by at least 8 data instances.
On average, the data sets include 44 instances (s.d.= 29.6). The GDS data sets
with following ID numbers were used: 806, 971, 1059, 1062, 1209, 1210, 1220,
1221, 1282, 1329, 1375, 1390, 1562, 1618, 1650, 1667, 1714, 1887, 2113, 2201,
2250, 232, 2415, 2489, 2520, 2609, 2735, 2771, 2785 and 2842.
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All data sets were preprocessed in the same manner. First, the probes mea-
suring the expression of the same gene were joined and the average value of the
expression over all probes was used. Second, in all data sets the gene expression
values for each gene were normalized to zero mean (µ = 0) and unit variance
(σ2 = 1).

2.2 Gene sets

We used the gene sets from the Molecular signatures data base (MSigDB v2.5) [2].
MSigDB includes five collections of gene sets that differ in the prior knowledge
or the computational method used for creating them. We have considered col-
lections C2 and C5, where gene sets where composed based on prior biological
knowledge. From these we selected gene sets that include at least five genes for
which the gene expression information was provided in the explored data set.
Also, large (and possibly non-specific) gene sets that included more than 200
such genes were excluded from the analysis. As a result of this filtering, we used
the following gene sets:

– C2cp: 639 gene sets belonging to canonical pathways (C2 collection). These
gene sets are compiled by domain experts from the pathway data bases and
are usually canonical representations of a biological process.

– C2C5: gene sets from the biological process and molecular function part of
gene ontology (C5 collection) in addition to gene sets from C2cp. Depending
on the number of genes in the specific data set, approximately 1.600 gene
sets covering up to 7.900 genes met these criteria.

2.3 SetSig: sample characterization by gene set signatures

We here describe SetSig, a new approach to summarizing gene expression data
into features based on gene sets. Our primary motivation was to construct a rel-
atively simple method that does not rely on linear transformations and on search
for gene groups within gene subsets which can potentially lead to overfitting.

Gene expression data consists of a number of samples S described by gene
expressions, fS(g) (where g represents a gene) and the class value. SetSig trans-
forms the data so that samples are described by gene set signatures, fS(G)
(where G is a gene set) computed from the original gene expressions. The pro-
cedure for computation of fS(G) for a particular sample S and gene set G goes
as follows:

1. Let C1 and C2 be sets of samples belonging to the first and to the second
class, respectively.

2. Calculate the Pearson correlation coefficient between the expressions of genes
from gene set G in the sample S and every sample from C1 and from C2.
For a given gene set G, let R1 and R2 then be the corresponding sets of
correlation coefficients, that is

R1 = {rG(S,C) : C ∈ C1}, R2 = {rG(S,C) : C ∈ C2},

where rG(S,C) is the correlation between fS(gi) and fC(gi) for gi ∈ G.

On utility of gene set signatures: MLSB’09 67



3. The genes set G’s signature for sample S, fS(G), is then computed as the
Student’s t-statistics for difference between R1 and R2:

fS(G) =
R1 −R2√

s2R1
/N1 + s2R2

/N2

,

where N1 and N2 are the number of samples in C1 and C2, respectively.

Intuitively, coefficients in R1 are high (low) if expressions of genes from gene
set G in the sample S are similar to (different from) expressions of these genes
in the samples from the first class. Coefficients in R2 describe the similarities
(differences) for the second class. Student’s t-test measures whether the coeffi-
cients in R1 differ from those in R2 that is, how important are the genes from G
for distinguishing between the two classes. The sign of the t-statistic is positive
(negative) if the particular sample’s gene expressions are more similar to those
of first (second) class.

This procedure is used on each sample and for each gene set. The result is a set
of samples described with gene set-based features, instead of by gene expressions.
Notice that the same procedure is used for gene set signature construction for the
training and testing set, where the signatures of testing instances are obtained
using sets R1 and R2 computed on the training data. While SetSig directly
addresses the data with binary class variable, it can be simply extended to
multi-class prediction problems by construction of a separate classifier for each
of the sample labels. In the paper we concentrate on the performance of the core
method only and study only binary classification problems.

2.4 Other gene set signature transformation methods

In experiments we compared SetSig to other, previously published methods that
use transformation of gene expression data sets to data sets comprising gene set
scores. These transformations include:

1. Mean and Median [6], where each gene set is characterized with mean (me-
dian, respectively) expression of genes from the gene set.

2. ASSESS [13], which ranks sample’s genes according to the differential prob-
abilities of the two classes and scores gene sets as the deviation of a random
walk from zero. The parametric model [13] was used for estimation of differ-
ential probabilities.

3. The first principal component of PCA [7] of genes in the gene set.
4. Activity scores based on condition-responsive genes (CORGs) [11], which

differs from other evaluated methods by using only a subset of up or down-
regulated genes from the gene set.

2.5 Estimation of predictive accuracy, classification, evaluation of
results

Different supervised learning methods have been used to build class prediction
models in the space of gene set signatures and in the space of gene expressions.
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Models were built with support vector machines (SVMs) with linear kernel, a
naive Bayesian classifier, a k-nearest neighbor learner, and a logistic regression
learner. We report on the results for the SVM and logistic regression models,
which outperformed models built with other supervised learning approaches.
The results of other tested class prediction methods show similar trends.

We used leave-one-out validation to estimate the area under ROC curve
(AUC) of the tested models. The same evaluation procedure was used across the
entire set of 30 data sets. For each data set, the various methods were ranked.
Statistical significances of differences between average ranks of tested methods
were evaluated with the Nemenyi test and were visualized with critical distance
graphs [15].

All supervised learning approaches were used as embedded in Orange data
mining environment [16]. Orange was also used to implement SetSig and re-
implement all other gene set-based supervised learning procedures investigated
in this report.

3 Results

We first compared the predictive accuracy of class prediction models using SetSig
transformed data sets with the C2cp and C2C5 gene set subsets with predictive
accuracy of the models built with original gene expression data. For the latter,
no feature selection or any additional data transformation was used. Figure 1
shows that SVM models built with original data sets perform significantly better
than SetSig on the C2cp subset and better (but not significantly) for the C2C5
subset. As expected, SetSig performs better with larger number of gene sets
(more biological knowledge), albeit the difference was not significant.

1 2 3

genes_all
Setsig_C2C5

Setsig_C2cp

CD

Fig. 1. Critical distance graph showing the average AUC ranks of SVM models on
original gene expression data sets(genes all) and data sets transformed by SetSig (either
with gene sets C2cp or C2C5). Methods connected with bold lines are not significantly
different (α = 0.05).

Figures 2 and 3 include the results for all gene set-based transformations
listed in Sec. 2.4 for the SVM and logistic regression models, respectively. Gene
sets in C2C5 were used as the models built with them performed better in the
experiments with SetSig reported above. Nemenyi test identifies two groups of
insignificantly different methods connected with a bold line in Figure 2. Inference
from gene expression without gene set transformation performs best, although

On utility of gene set signatures: MLSB’09 69



the difference is only significant for two of the six gene set-based methods (PCA
and ASSESS). The difference between all gene set methods is statistically in-
significant. Of all the tested methods, SetSig performed best. Similar trends can
be observed in Figure 3 for the models built with logistic regression. Again,
models built with the original gene expression data preform best. The difference
in the average ranks is significant for two of the gene set transformation meth-
ods (Median and CORGs). SetSig outperforms other gene set transformation
methods and is significantly better than the Median approach.

1 2 3 4 5 6 7

genes_all
Setsig

CORGs
Mean

Median
Assess
PCA

CD

Fig. 2. The average AUC ranks of SVM models on original gene expression data sets
(genes all) and transformed using a variety of gene set-based transformation methods.

1 2 3 4 5 6 7

genes_all
Setsig
Mean

Assess
PCA
CORGs
Median

CD

Fig. 3. The average AUC ranks of logistic regression models on original gene expression
data sets (genes all) and transformed using a variety of gene set-based transformation
methods.

Gene set-based approaches use only a subset of genes from the original ex-
pression data sets. One reason for poorer performance of these approaches could
have been that some informative genes are left out. We tested this by eval-
uating the accuracy of predictive models built directly from gene expressions
but using only a subset of genes. We have examined the following subsets in
this way: (1) genes present in C2cp (genes C2cp), (2) genes not present in C2cp
(genes notC2cp), (3) genes present in C2C5 (genes C2C5), (4) genes not present
in C2C5 (genes notC2C5), and (5) all genes (genes all).

The average ranks of the models built with the above mentioned subsets and
the differences between them are shown in Figure 4. The average ranks of AUC
of models built with different subsets of genes are very similar. No statistically
significant differences were detected.

70 MLSB’09: M. Mramor et al.
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genes_C2C5
genes_all

genes_C2cp
genes_notC2cp
genes_notC2C5

CD

Fig. 4. The average ranks of AUC-scored classifiers that use different subsets of genes.
The differences are statistically insignificant.

4 Discussion

Our experimental results indicate that transformation of gene expression data to
the space of gene set signatures does not result in increased accuracy of predictive
models when compared to those trained from original (not transformed) data.
In fact, the latter, “gene-set free” approach consistently ranked higher in our
experiments. Of all the tested gene set approaches, SetSig’s performance was
closest to that of using all genes.

These results come as a surprise. First, in explorative data analysis, the utility
of gene sets is motivated by gains in interpretability, and also by gains in stability
and robustness of results, even when compared across data sets obtained from
different laboratories [17].

Next, several recently published papers explicitly report that their gene set
approaches over-perform the gene-centric approach. Closer inspection shows that
these assertions are not a result of systematic study, and either used a very
limited number of data sets in the study [12, 13, 11], or, as in the most recent
report, are based on too restrictive gene selection (feature set selection of only
a handful genes in gene-centric approach) prior to learning [11]. But even with
such lack of systematic testing, all the present evidence reported votes in favor
of gene set-based approaches.

Finally, we would in general (albeit naively) expect to gain with any inclusion
of additional (background) knowledge in machine learning. However, in frame-
works described in this paper such knowledge is used to transform, rather than
complement the problem domain. We can think of a number of other reasons
why the utility of gene sets with respect to predictive accuracy fails:

1. Gene sets do not include some highly class-informative genes.
2. There are too many gene sets.
3. Some gene sets are very similar to each other.
4. Gene set signature construction methods lose information.
5. Number of samples (instances) is too low to reliably estimate gene set scores.
6. Biological knowledge of the genes is incomplete. Gene sets and pathways

used are not specific enough to represent biological processes that distinguish
between different cancer types.

We can reject reason (1) based on results on gene-centric approach that used
genes from different sets (Figure 4), where no significant differences were ob-
served. Facts stated in (2) and (3) can hurt supervised learning, but gene-centric
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approaches must deal with the same kind of problems (abundance of genes,
many of which are co-expressed genes). Due to (4) we have tested six different
approaches, including very promising and elaborate ones such as CORGs. (5)
clearly deserves further investigation. Previous studies have already shown that
supervised learning methods may fail due to low sample size [18, 19]. Finally (6),
despite incompleteness of biological knowledge on genes, we would expect that
additional information in the form of gene sets should help us in inference of
reliable classifiers, even more for the methods like CORGs which remove genes
that do not contribute to class differentiation from the gene sets.

5 Conclusion

The reasons why gene set-based transformations for supervised learning from
gene expression data sets fail when compared to gene-centric learning seem elu-
sive. In fact, they do not fail, but rather – contrary to our expectations and to
several recent reports – do not surpass the more standard and direct learning
from gene expression profiles. Yet, predictive performance is not the only issue
here, and gene set-based predictive models can significantly gain with regard to
ease of interpretation and information they provide to biologists and clinicians.
We have indeed observed that just like for gene-centric models [20] we could con-
struct very simple and highly-predictive visual models using only a few gene set
signatures. We can thus conclude that knowledge on gene sets may be a useful
resource for supervised microarray data analysis, but that methods for its inclu-
sion in model inference require further studying and improvements, specifically
in terms of gains in predictive accuracy.
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1 Introduction

Microarray classification is a topic of great interest now-a-days in medical and
bioinformatics research. Microarrays simultaneously measure the mRNA expres-
sion level of thousands of genes in a cell mixture at certain times and in different
environmental conditions. One of the main characteristic of this kind of data
is the huge disproportion between the number of examples (generally 10 to 100
microarrays by experiment) and number of features (several thousands of genes).
Microarrays are used in many fields of medical research. Among the most promi-
nent and useful applications is the prediction of a biological parameter based on
the gene-expression profile. For example, by comparing the expression profiles of
different tissue types we can predict different biological parameters like different
types of tumors with different outcomes, survival time of a cancer patient after a
therapy, weight loss prediction after a diet control and/or bariatric surgery etc.
and hence assist in the selection of a therapeutic treatment [7, 2, 19].

A large number of methods, from machine learning, have been successfully
applied to classify microarrays, Diagonal Linear Discriminant Analysis (DLDA)
and k-nearest neighbors [7], Support Vector Machine [9], Random Forests [3] etc.
The performances of these classifiers are measured by their accuracy to predict
the true class. This accuracy is estimated by re-sampling procedures like cross-
validation or bootstrap. A natural question is which one is the best classifier for
microarray based classification? Unfortunately the answer is not easy. Several
comparative studies have been published. Man et al. [17] claim that Support
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nadeem@yahoo.com. I am a Ph.D candidate in the filed of biomedical informatics.
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Vector Machine (SVM) and Partial Least Squares Discriminant Analysis (PLS-
DA) have the best accuracy. Dudoit et al. [7] show that simple methods like
DLDA and k-nearest neighbors produce good results, whereas Statnikov et al.
[18] conclude the superiority of SVM. Probably the more confident conclusion
is given by both Lee et al. [16] and Huang et al. [12] that there is no classifier
uniformly better than the other. Moreover, all these studies are based on the
error rates of obtained classifiers. But the error rate is not the only metric of
interest to measure the quality of a classifier. Generally, in medical application,
a reject option is added to the classifiers. When the prediction of an example is
not safe, the classifier reject this example and does not assign any class to it.
Reject option introduced by Chow [5] states that refrain from taking decision
for samples whose decision is less confident in order to reduce error probabili-
ties. Friedel et al. [8], Hanczar et al. [10] and others used reject option in their
methods for improvement in prediction accuracy of classifiers and proved that
reject option considerably enhances the prediction accuracy of classifiers. So, the
performance of these classifiers depend on both accuracy and rejection rate. But
we don’t have a tool to compare the performances of different classifiers with
reject option. In this paper we propose a methodology called ARC that com-
pares the performance of classifiers based on their accuracies and rejection rates.
According to our knowledge, there is no comparison study including classifiers
with reject option in the literature. A general assumption is that the comparison
of classifiers is the same with and without reject option. In this paper, we test
this assumption and show that it is wrong. Our assumption is that rejection has
different impact on the accuracy of different classifiers, and the best classifier
depends also on the quantity of rejection. The ARC methodology proposes to
compare the performances of classifiers in the function of their reject rate by
considering different reject areas ranging from 0.2% to 100% reject rates. Our
experimental results based on diverse pure artificial data and artificial data sets
synthesized from real data show that the proposed comparison of different clas-
sifiers (with reject option) is advantageous for the selection of best available
classifier for a given data.

2 Classification with Reject Option

Chow [4] introduces the concept of reject option. Consider a binary classification
problem where each example falls in one of the categories. The performance of
a classifier is measured by its error rate. The classifier minimizing the error is
called the Bayes classifier.

If the accuracy of the Bayes classifier is not sufficient for the task at hand,
then one can take the approach not to classify all examples, but only those for
which the posterior probability is sufficiently high. Based on this principle, Chow
[5] presented an optimal classifier with reject option. A rejection region is defined
in the feature space and all examples belonging to this region are rejected by
the classifier. The classifier rejects an example if the prediction is not sufficiently
reliable and falls in the rejection region. There is a general relation between the
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error and rejection rate: According to Chow [5] the error rate decreases monoton-
ically while the rejection rate increases. Based on this relation, Chow proposes
an optimal error versus reject tradeoff. In classifier with rejection option, the key
parameters are the thresholds that define the reject areas. Landgrebe et al. [14]
Dubuisson and Masson [6], Hanczar and Dougherty [10] and others proposed
several strategies to find an optimal reject rule. In our work, we do not deal with
the problem of optimal tradeoff between error and rejection. In our approach,
we used different rejection areas and computed resulting accuracies. We varied
the size of rejection area from 0% to 100% by an increment of 0.2% resulting
in 500 rejection areas. To represent the results we plotted the rejection windows
against obtained accuracies.

3 Comparing Classifiers with Reject Option

The performances of classifiers are measured by their accuracy to predict the
true class. Several studies (some of them mentioned in introduction) claim the
superiority of different classifiers. All the comparitive studies are based on the
error rates of obtained classifiers but error rate is not only the measure to judge
a classifier’s performance. The performance of a classifier depends heavily on
the data too. So, for each classification task, a comparison study should be done
to determine the best classifier. In case of classification with reject option, the
accuracy also depends on the reject rate. In this paper we propose a classifiers’
comparison method in the scenario of reject option. The idea is to watch the
accuracies of the classifiers as the function of their reject rate. Based on this
idea we define 3 different situations:

Fig. 1. Illustration of the 3 cases of possible Accuracy-Rejection Curves (ARCs).

1. Case 1: A classifier (say Cls1) initially performs worse than another classi-
fier (say Cls2). By opting reject option, Cls1 outperforms Cls2. Name this
crossing over as T1 type Accuracy-Rejection Curve(ARC).

2. Case 2: Without selecting to reject or rejecting to some extent both the
classifiers Cls1 and Cls2 perform approximatley same but with more and
more rejection, one of the classifier increases its performace more rapidly
than other. Call this diversion as T2 type ARC.
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3. Case 3: If Cls1 and Cls2 are very much distinct in their performance without
rejection but the reject option does affect identically to both of them. Name
these curves as T3 type ARCs.

In this paper we propose that the performances of classifiers can also be
represented by 2-dimensional Accuracy-Rejection Curves (ARCs) where the axes
are their accuracies and rejection rates. Figure 1 illustrates the 3 different cases
that we defined. To select the best available classifier using ARCs for a problem in
hand, a measure (desired accuracy, acceptable rejection rate) should be known.
If desired accuracy is known we move horizontally on ARCs plot and select
the available classifier with least rejection rate. We select the classifier with
maximum prediction accuracy for a given rejection rate.

3.1 Data

Our experiments are based on two kinds of data: pure artificial data generated us-
ing Gaussian models, synthetic data generated using parameters estimated from
real microarray data using Expectation-Maximization (EM) algorithm from mi-
croarray studies: colon cancer data (Alon et al.), lymphoid malignancy (Shipp
et al.) and acute myeloid leukemia” (AML) and acute lymphoblastic leukemia
(ALL) (Golub et al.). Details of artificial data generation proceudre and differ-
ent settings and description of the parameters can be found on the companion
website http://bioinfo.nutriomics.org/~sajjad/ARC/.

The experiments on real data require the use of sampling methods to esti-
mate the error rate and it has been show that these methods are inaccurate for
small-sample problems rather the use of synthetic data give more accurate error
estimation [11]. So we don’t use real microarray data in our experiments.

For each classification problem, we generate data with 20 features, called
noise free features. In real microarrays most of the genes are irrelevant for the
classification task in hand [1, 9, 22, 15]. So to have a more realistic aspect, 380
irrelevant or noise features dirrF = 380 are added to artificial datasets. A noise
feature follows the same Gaussian distribution for the two classes N(µ; σ). The
generated data contain N examples, 400 features where 380 are noise features
and 20 are noise free features.

3.2 Experimental Design:

We used following decorum in our experimental design.

1. Generate class-labelled train data ntrcontaining 50, 100 or 200 examples and
a total of D = Dnf + Dn features.

2. Generate test data ntscontaining 10000 examples and a total of D = Dnf +
Dn features.

3. Find 20 or 40 best features by using t-test feature selection method on DTr

and reduce train data by selecting only dsel = 20 best features from train
data set.
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4. Reduce test data by driving the same best features from test dataset DTs.
5. Apply a classification rule to build a classifier Cls from DTr according

to most widely used classification rules for microarray analysis including
Support Vector Machine Linear kernel (SVM-Linear); Support Vector Ma-
chine Radial kernel (SVM-Radial); Linear Discriminant Analysis (LDA);
Quadratic Discriminant Analysis (QDA); random Forest (RF).

6. Compute true error rate/rejection rates of the underlying model on test data.
7. Repeat step 6 for all sizes of rejection windows Rwin = {0.002, 0.004, 0.006,

0.008, .....1.000}
8. All steps 1-7 iterated 100 times.
9. Final result is averaged from all iterations.

We randomly generated 100 different data sets in each case and then these
100 replications are used for classification using classification rule (SVM-Linear,
SVM-Radial, LDA, QDA, etc).

4 Results and Discussion

The experiments use both pure synthetic data and synthetic data based on real
microarray patient data. The experiments on synthetic data permit very accurate
estimations of the error and rejection rates.

Fig. 2. A(left):Rejection verses Accuracy curve on linear, non-correlated data with
1 Gaussian per class where train set = 50 examples and test set= 10000 examples.
B(right):Rejection verses Accuracy curve on non-linear, correlated data with 1 Gaus-
sian per class where train dataset =100 examples and test dataset = 10000 examples.

In each of the following figures we plot average rejection versus average ac-
curacy for all classification rules R = 5 and for one of the data sets. Here we
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Fig. 3. Rejection verses Accuracy curve on Synthetic data from colon cancer patient
dataset with 5 Gaussians per class where train dataset = 200 examples and test
dataset= 10000 examples.

present some typical results while leaving the complete results on the compan-
ion website http://bioinfo.nutriomics.org/~sajjad/ARC/. In the plots solid
lines represent the accuracy rejection curve of SVM with Radial kernel, dashed
lines show SVM with Linear kernel, dotted lines are of LDA, dashed-dotted
lines are of QDA, and filled-circle lines represent RF. In Figure:2A we notice
that SVM-Radial without rejection (0% rejection) produces around 87% accu-
racy and RF without rejection (0% rejection) results 85% accuracy. By opting
to reject around 50% RF becomes better classifier than SVM-Radial. Also an
interesting point here in Figure:2A is that with 45% rejection rate both LDA and
SVM-Linear behave similarly as for as accuracy is concerned. But after 45% re-
jection, LDA outperforms SVM-Linear. Figure:2A depicts that initially without
rejection LDA and SVM-Linear have almost identical accuracies. While reject-
ing on 3% and more samples SVM-Linear performs better than LDA. Figure:2B
shows that LDA and SVM-Linear produce similar accuracies starting from with-
out rejection (0% rejection) to 18% rejection but from 19% rejection SVM-Linear
starts performing much better than LDA. In Figure:3, while comparing LDA and
SVM-Radial, we found the situation where curves of LDA and SVM-Radial cut
each other making LDA better than SVM-Radial. Also this figure does show
that on evaluating the performances of QDA and SVM-Radial, QDA outper-
forms SVM-Radial on having reject option. Each of our result reflects that as
we reject more, we get more and more accuracy. Not all the classification rules
used here respond identically to reject option. By analysing three presented fig-
ures in this section, we have interesting results where different classification rules
respond differently different at different rejection rates. In our study some re-
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spond more quickly and we get more accurate classification than that of others.
Empirical results show that most of the times one or more classification rules
outperform the other(s). On the basis of above presented results and discussion
we can have three types of ARCs proposed in the section Comparing Classifiers
with Reject Option. The identification of these types of curves is advantageous
in several ways. First: during the selection of suitable classifier for a classifica-
tion problem if T1 curves are available then the classifier which outperforms
the others should be given priority. Second: In case of T2 curves, we may reject
upto desired limit and then the classifier with high performance may be utilized.
Third: When T3 curves are there then at a given rejection extent, the classifier
with higher performance should be selected for that specific dataset for which
the comparison was made.

In Tables on companion website http://bioinfo.nutriomics.org/~sajjad/
ARC/ we summarize our all the 90 experiments based on the above mentioned
categories of curves. While experimenting with pure artificial data we noticed
that in 72 experiments we have 40 times the situation when one or more classi-
fier outperforms the other (by crossing over of curves i.e. category T1). Also an
interesting point is that we have 59 situations where without or with some re-
jection, two or more classifiers perform almost identically. But with more or less
rejection, one of the classifier improves its prediction capability more promptly
than the other (category T2). Here we have only 12 cases where T3 type curves
are present in the results. In total of 90 experiments we found 43 times when
one or more classifier outperforms the other through T1 curves. We also experi-
enced 64 T2 curves. The presence of more T2 and T3 curves reflects that the use
of reject option in comparison of classifiers is extremely fruitful and in most of
the cases aids in more optimal classifier selection. The presence of 22 T3 shows
that sometimes rejection affects almost identicaly on the performances of the
classifiers and there remains no significant change in the performances of two
classifiers as compared to each other.

5 Conclusion

In this study we introduce the accuracy - rejection curves (ARCs) that allow to
accurately represent the performance of classifiers. We see that it is necessary
to watch both accuracy and rejection rate to compare two classifiers. On the
basis of our empirical results we categorize the classifiers comparison into three
types (T1, T2, T3 types ARCs). We made classifiers comparisons on a high num-
ber of experiment based on artificial data for 500 different reject areas ranging
from 0.2% to 100% reject rates. We use different settings of parameters for pure
synthetic data to construct different kinds of classification problems (linear and
non-linear, correlated and non-correlated features with train sets). For synthetic
data from real patients’ data, model’s parameters depend on the real data. In
our results the presense of large number of T1 and T2 types of ARCs shows that
ARCs are of interest while comparing classifiers’ performances. Small number of
T3 type ARCs reflects that there are some possibilities of no significinat change
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in performance of a classifier while using reject option but the chances remain
very little. While comparing the classifiers’ performances, the extent upto which
one can allow the rejection is still to be addressed. Also, obtaining optimal reject
area is still an open question and needs further exploration. In function of the
rejection rate, the conclusion of the comparison can be different.

References

1. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P.,
Coller, H., Loh, M., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.:
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene
Expression Monitoring. Science. 286, 531–537 (1999)

2. Braga-Neto, U.M., Dougherty, E.R.: Is cross-validation valid for small-sample mi-
croarray classification? Bioinformatics. 20(3), 374–380 (2004)

3. Breiman, L.: Random Forests. Machine Learning. 45, 5–32 (2001)
4. Chow, C.K.: An Optimum Character Recognition System using Decision Functions.

IRE Trans. on Electronic Computers. EC-6, 247–254 (1957)
5. Chow, C.K.: On Optimum Error and Reject trade-off. IEEE Trans. on Information

Theory. IT-16(1), 41–46 (1970)
6. Dubuisson, B., Masson, M.: A Statistical Decision Rule with incomplete Knowledge

about Classes. Pattern Recognition. 26(1), 155–165 (1993)
7. Dudoit, S., Fridlyand, J., Speed, T.: Comparison of Discrimination Methods for

the Classification of Tumors using Gene Expression Data. Journal of the American
Statistical Association. 97, 77–87 (2002)

8. Friedel, C.C., Ruckert, U., Kramer, S.: Cost Curves for Abstaining Classifiers. In
Proceedings of the ICML 2006 workshop on ROC Analysis in Machine Learning
(2006)

9. Furey, T.S., Christianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler,
D.: Support Vector Machine Classification and validation of Cancer Tissue Samples
using Microarray Expression Data. Bioinformatics. 16(10), 906–914 (2000)

10. Hanczar, B., Dougherty, E.R.: Classification with Reject Option in Gene Expres-
sion Data. Bioinformatics. 24 no. 17, 1889–1895 (2008)

11. Hanczar, B., Hua, J., Dougherty, E.R.: Decorrelation of the True and Estimated
Classifier Errors in High-Dimensional Settings. EURASIP Journal on Bioinformatics
and Systems Biology. 2007, 12 pages (2007)

12. Huang, X., Pan, W., Grindle, S., Han, X., Chen, Y., Park, S.J., Miller, L.W., Hall,
J.: A comparative study of Discriminating Human Heart Failure Etiology using
Gene Expression profiles. BMC Bioinformatics. 6, 205 (2005)

13. Isaksson, A., Wallman, M., Gransson, H., Gustafsson, M.G.: Cross-validation and
Bootstrapping are unreliable in small Sample Classification. Pattern Recognition
Letters. 29(14), 1960–1965 (2008)

14. Landgrebe, T.C.W., Tax, D.M.J., Paclk, P., Duin, R.P.W.: The interaction between
Classification and Reject Performance for Distance-based Reject-option Classifiers.
Pattern Recognition Letters Pages. 27(8), 908–917 (2006)

15. Li, L., Weinberg, C.R., Darden, T.A., Pedersen, L.G.: Gene selection for sample
classification based on gene expression data: study of sensitivity to choice of param-
eters of the GA/KNN method. Bioinformatics. 17, 11318–1142 (2001)

16. Lee, J.W., Lee, J.B., Park, M., Songa, S.H.: An extensive Comparison of recent
Classification tools applied to Microarray Data. Computational Statistics & Data
Analysis. 48, 869–885 (2005)

82 MLSB’09: M. Nadeem et al.



17. Man, M.Z., Dyson, G., Johnson, K., Liao, B.: Evaluating Methods for Classifying
Expression Data. Journal of Biopharmaceutical Statistics. 14, 1065–1084 (2004)

18. Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A compre-
hensive evaluation of Multicategory Classification methods for Microarray Gene
Expression Cancer diagnosis. Bioinformatics. 21, 631–643 (2005)

19. Wang, L., Chu, F., Xie, W.: Accurate Cancer Classification Using Expression of
Very Few Genes. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics. 4(1), 40–53 (2007)

20. Egan, J.P.: Signal detection theory and ROC analysis, Series in Cognition and
Perception. Academic Press, New York. (1975)

21. Swets, J.A., Dawes, R.M., Monahan, J.: Better decisions through science. Scientific
American. 283, 82-87 (2000)

22. Zhou, X., Mao, K.Z.: LS Bound based gene selection for DNA microarray data.
Bioinformatics. 21(8), 1559-1564 (2005)

Accuracy-Rejection Curves (ARCs): MLSB’09 83



84 MLSB’09: M. Nadeem et al.



Predicting the functions of proteins in PPI
networks from global information

Hossein Rahmani1, Hendrik Blockeel1,2, and Andreas Bender3

1 Leiden Institute of Advanced Computer Science, Universiteit Leiden,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

hrahmani@liacs.nl,blockeel@liacs.nl
2 Department of Computer Science, Katholieke Universiteit Leuven,

Celestijnenlaan 200A, 3001 Leuven, Belgium
3 Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research,

Leiden University
2333 CC Leiden The Netherlands
andreas.bender@pharma-it.net

Abstract. In this work we present a novel approach to predict the func-
tion of proteins in protein-protein interaction networks. We classify ex-
isting approaches into inductive and transductive approaches, and into
local and global approaches. As of yet, among the group of inductive ap-
proaches, only local ones have been proposed. We here introduce a pro-
tein description formalism that also includes global information, namely
information that locates a protein relative to specific other proteins in
the network. The method is benchmarked on four datasets and we found
that on these datasets classification according to precision and AUC val-
ues indeed improves over the benchmark methods employed.

1 Introduction

In recent years, much effort has been invested in the construction of protein-
protein interaction (PPI) networks. Much can be learned from the analysis of
such networks with respect to the metabolic and signalling processes present
in an organism, and the knowledge gained can also be prospectively employed
e.g. to predict which proteins are suitable drug targets, according to an analysis
of the resulting network. One particular machine learning task that has been
considered is predicting the functions of proteins in the network.

A variety of methods have been proposed for predicting the classes of pro-
teins. On a high level we can distinguish two types of approaches, namely in-
ductive and transductive ones. Inductive learning approaches, also called model-
based approaches, construct a model (a mathematical function) that maps a de-
scription of a protein onto its functions. Transductive approaches, on the other
hand, immediately make predictions for the proteins in the network, without
going through the intermediate stage of constructing a model that can be used
afterwards for making predictions. The difference between these two will be de-
scribed more formally in the next section.
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Transductive approaches are often “global”: information on the whole net-
work is taken into account when making predictions. The inductive approaches
that have been used up till now are typically local, in the sense that the descrip-
tion of a protein (from which its labels are to be predicted) contains information
about the local neighborhood of the protein, not about the network as a whole.
This is not an inherent property of inductive approaches, though; one might just
as well try to construct a description that contains global information. Accord-
ingly, in this paper we explore the usefulness of one particular kind of global
information for the task of protein function prediction.

The paper is structured as follows. In Section 2 we define the learning prob-
lem formally. In Section 3 we briefly review approaches that have been proposed
before to solve this problem. In Section 4 we present a new inductive learning
approach; we do not present any new learning algorithms but a new description
format of proteins, which contains global rather than local information. In Sec-
tion 5 we empirically evaluate the performance of several learning algorithms
when using this format, and, as a control experiment, compare this performance
to that of a previously proposed approach. We present our conclusions in Section
6.

2 Problem Statement

Mathematically, PPI networks are graphs, and the problem we consider is that
of predicting the labels of nodes in this graph.

Consider an undirected graph G with node set V and edge set E, where each
node v ∈ V is annotated with a description d(v) ∈ D and, optionally, a label
l(v) ∈ L. We assume that there exists a “true” labelling function λ from which
l is a sample, that is, l(v) = λ(v) where l(v) is defined.

In transductive learning, the task is to predict the label of all the nodes.
That is, given the graph G = (V,E, d, l), with l a partial function, the task is to
construct a completed version G′ = (V,E, d, l′) with l′ a complete function that
is consistent with l where l(v) is defined.

In practice, there is an additional constraint that l′ should approximate λ.
This is imposed by some optimization criterion o, the exact form of which ex-
presses assumptions about λ. For instance, o could express that nodes that are
directly connected to each other tend to have similar labels by stating that the
number of {v1, v)2} edges where l′(v1) "= l′(v2) should be minimal. The assump-
tions made about λ are called the bias of the transductive learner.

In inductive learning, the task is to learn a function f : D → L that maps
a node description d(v) onto its label l(v). That is, given G = (V,E, d, l), we
need to construct f : D → L such that f(d(v)) = l(v) when l(v) is defined, and
f is defined for all elements of D. Note that f differs from l in that it maps D,
not V , onto L. This implies, for instance, that it can also make predictions for
a node v that was not in the original network, as long as d(v) is known.

Besides the bias expressed by the optimization criterion o (which may still
be present), there is now also a bias imposed by the choice of D: whenever two
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different nodes have the same description, they are assumed to have the same
labels: d(v1) = d(v2) ⇒ λ(v1) = λ(v2). Additionally, the learning algorithm
used to learn f has its own inductive bias [1]: given exactly the same inputs,
two different learning algorithms may learn different functions f , according to
assumptions they make about the likely shape of f .

Thus we have three types of bias. Transductive learners have a transductive
bias, which is implied by the choice of the optimization criterion o. Inductive
learners have a description bias, imposed by the choice of d, and an inductive
bias, imposed by the choice of the learning algorithm that is used to learn f from
(d(v), l(v)) couples. In this paper we will explore for one particular description
function d wether it represents a suitable description bias.

In the context of protein function prediction in PPI networks, the nodes v
are proteins; the descriptions d(v) can be any description of the protein that
can be derived from the network structure (no additional information, such as
the protein structure, is assumed to be available; we assume we learn from the
network structure only); the labels l(v) are sets of protein functions.

Note that many proteins have more than one function; this is why a node
label can be any set of functions. Most off-the-shelf machine learning techniques
can only learn classifiers that predict a single value, not a set of values. The fact
that node labels are sets may seem to form a problem in this respect. To remedy
this situation, if we have n possible functions, the task of predicting a subset of
these functions can easily be transformed into n single-function prediction tasks:
for each possible function a binary classification task is then constructed where
nodes are to be assigned the class true or false depending on whether the protein
has that function or not. This is the setting we will focus on in this paper.

3 Related work

Among transductive approaches to the protein function prediction problem, the
Majority Rule approach has a prominent role [2]. This method assigns to a
protein those functions that occur most frequently among its neighbors (typically
a fixed number of functions is predicted, for instance, the three most frequently
occurring functions in the neighborhood). One problem with this approach is
that it only considers neighbors of which the function is already known, ignoring
all others. To address this problem, global optimization-based function prediction
methods have been proposed. Any probable function assignment to the whole
set of unclassified proteins is given a score, counting the number of interacting
pairs of nodes with no common function; the function assignment with the lowest
value will be the best assignment [3, 4].

Another improvement over the original implementation was made by observ-
ing higher-level interactions [5]. Level k interaction between two proteins mean
that there is a path of length k between them in the network. Proteins that have
both a direct interaction and shared level-2 interaction partners have turned
out to be more similar to each other. Taking this further, one can make the
assumption that in dense regions (subgraphs with many edges, relative to the
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number of nodes) most nodes have similar functions. This has led to clustering
approaches which first cluster the networks (with clusters corresponding to dense
regions), and subsequently predict the function of unclassified proteins based on
the cluster they belong to [6, 7].

Among the inductive approaches, Milenkovic et al.’s graphlet-based approach
[8] has been used in the area of protein function predictions. The node description
d(v) that is built here, in their terminology the “signature vector”, describes
the local neighborhood of the node in terms of so-called graphlets, small graph
structures as a part of which each node occurs. Most other inductive approaches
use similar signatures. Typical for them is that they describe only the local
structure of the network near the node to be predicted, however remote changes
in the network do not influence the signature at all.

4 A global description of proteins

In this work we will now introduce an inductive approach that uses global node
descriptions to the area of protein-protein interactions; that is, any change (e.g.,
addition or removal of an edge) in the network, wherever it occurs, may in-
fluence a node’s description. Our hypothesis is that the inclusion of additional
information will improve the function prediction of unknown nodes which will
be investigated in the following in detail.

We describe a node as follows. Assume that there are n nodes in the net-
work, identified through numbers 1 to n. Each node is then described by an
n-dimensional vector. The i’th component in the vector of a node v gives the
length of the shortest path in the graph between v and node i.

It has been hypothesized before that shortest-path distances are relevant in
PPI network analysis; for instance, Rives and Galitski [9] cluster nodes based on
shortest-path distance profiles. As of yet, however, such shortest-path distances
have not been considered in the context of inductive learning of protein function
predictors which is the reason for the current work.

A potential disadvantage of this method is that in large graphs, one gets very
high-dimensional descriptions, and not all learners handle learning from high-
dimensional spaces well. It is possible, however, to reduce the dimensionality of
the vector by only retaining the shortest-path distance to a few “important”
nodes. This essentially represents a feature selection problem. A node i is im-
portant if the shortest-path distance of some node v to i is likely to be relevant
for v’s classification. If the feature fi denotes the shortest path distance to node
i, one possible measure of the relevance of fi for the label of a node (which is a
set of functions) is the following.

For each function j, let Gj be the set of all proteins that have that function
j. Let f̄ij be the average fi value in Gj , and var(fij) the variance of the fi in
Gj . The following formula, inspired by ANOVA (analysis of variance), gives an
indication of how relevant fi is for the function set as a whole:

Ai =
V arj [f̄ij ]

Meanj [var(fij)]
(1)
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where V arj and Meanj denote the Variance and Mean operators taken over
all values of j. A high Ai denotes a high relevance of feature fi.

In the following, we will empirically determine whether the shortest-path dis-
tances to all, or a few particular, nodes are indeed informative with respect to a
protein’s functions by evaluating the performance of the method on a benchmark
dataset.

5 Experiments

We performed two consecutive experiments. Firstly, we evaluated the potential
of the proposed protein description for protein function prediction by assessing
multiple learning systems and finding the learning system whose inductive bias
best fits our dataset. This step was made to alleviate the risk of concluding that
the description is insuitable, when the cause for bad results is in fact a poor
choice of learner. Secondly, we compared the performance of this system with
that of the Majority Rule, a transductive learner.4

We evaluate predictive performance using the following measures: area under
the ROC curve (AUC) [10], precision, recall, and F1. We do not include predictive
accuracy (percentage of predictions that are correct) because for several function
prediction tasks, the class distribution is highly skewed (e.g., 1% of the protein
has that function, 99% does not), and in such cases predictive accuracy (the
percentage of predictions that is correct) does not carry much information. AUC
and precision/recall are much more robust to skewed class distributions.

5.1 Datasets

We apply our method to four S.crevisiae PPI networks which are DIP-Core [11],
VonMering [12], Krogan [13] and MIPS [14]. DIP-Core, VonMering, Krogan and
MIPS have 4400, 22000, 14246 and 44514 interactions among 2388, 1401, 2708
and 7928 proteins respectively. We consider 18 high level functions for evaluating
our function predictors.

5.2 Comparison of Learners

Given the input data and a particular function to predict, any standard machine
learning tool can be used to build a model that predicts from a node’s description
whether the node has a particular function or not. We have experimented with
several methods, as available in the Weka data mining toolbox [15], namely de-
cision trees (J48), random forests, an instance based learner (IBk), Naive Bayes,
radial basis function networks, Support Vector Machine (SMO), Classification
via Regression (CVR) and Voting Feature Intervals (VFI). These methods were
chosen to be representative for a broad range of machine learning methods. This

4 Majority Rule was selected for its ease of implementation, and because it is still a
regularly used reference method.
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comparative evaluation was made on the DIP data set. The results are shown in
Figure 1. RF performs best among all learners in 14 out of 18 cases. The 4 cases
where it does not are all characterized by a very high class skew. The latter is
not so surprising: Random Forests are ensembles of decision trees, and these are
known to perform less well on highly skewed class distributions.

Fig. 1. Comparison of different machine learning methods on the DIP Dataset.

We have concluded from these results that the Random Forests method is
our best candidate for learning from this type of data, and we have used this
method in the remaining experiments.

5.3 Comparison with a transductive method

We next compare Random Forests and Majority Rule in predicting the proteins
functions of four datasets DIP-Core, VonMering, Krogan and MIPS. Firstly, we
select 700 nodes based on the Anova Measure. Then, we found the shortest path
of each protein to those selected proteins. We used this information as the input
for Weka and calculated the average Precision, Recall, F-Measure and AUC for
each function class in a 10-fold cross validation. Figure 2 compares the average
precision, over all classes, of Majority Rule (MR) and Random Forests (RF).
Figure 3 similarly compares the recall of MR and RF, and Figure 4 the F1-
measures. We see that, over the four datasets, RF has higher precision (11%
higher in average) but smaller Recall (10% smaller in average). RF and MR
perform almost similarly with respect to Fmeasure. The AUCs are compared in
Figure 5 ; again, RF tends to have higher scores (+6%)
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Fig. 2. Average precision of MR and RF in four datasets.

Fig. 3. Average recall of MR and RF in four datasets.

6 Conclusions

To summarize, we have firstly classified existing methods for the prediction of
node properties in a network into transductive and inductive methods; this dis-
tinction provides insight in potential strengths and weaknesses of the methods,
particularly in terms of the bias of the learning method. Inductive learning meth-
ods make different assumptions about the true labeling function than transduc-
tive methods which helped us in our choice of algorithm employed in this work.
Secondly, we observed that existing inductive learning methods for predicting
protein functions in PPI networks use local information, while the use of global
information for such methods has as of yet remained unexplored. Accordingly,
we have, thirdly, introduced a node description formalism that has not been
used previously for protein function prediction and which is global. On four
benchmark datasets, DIP-Core, VonMering, Krogan and MIPS, we have shown
that this method outperforms the benchmark Majority Rule approach accord-
ing to Precision and AUC and, hence, that it is informative with respect to the
prediction of the function of a protein from the functions of its neighbors.

In the future, a more extensive comparison with other learners would be
warranted. It would also be interesting to determine to what extent the infor-
mation in our global protein description is complementary to that used in other
(local inductive, or transductive) approaches. The reason is that when several
predictors exploit different information when making their predictions, they can

Predicting the functions of proteins: MLSB’09 91



Fig. 4. Average f-Measure of MR and RF in four datasets.

Fig. 5. Average AUC of MR and RF in four datasets.

typically be combined into a single composite predictor that performs better
than each individual one. Finally, while we have focused here on models that
predict a single class at a time, there exist a few methods that predict multi-
ple classes simultaneously [16]; it would be useful to investigate to what extent
these classifiers yield better predictions than the single-label prediction approach
presented here.
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Abstract. Several works showed that biomolecular data integration is a
key issue to improve the prediction of gene functions. Quite surprisingly
only little attention has been devoted to data integration for gene func-
tion prediction through ensemble methods. In this work we show that
relatively simple ensemble methods are competitive and in some cases
are also able to outperform state-of-the-art data integration techniques
for gene function prediction.

1 Introduction

The availability of an ever increasing amount of data sources due to recent
advances in high throughput biotechnologies opens unprecedented opportuni-
ties for genome-wide gene function prediction. Indeed several works showed
that biomolecular data integration play an essential role in the prediction of
genes/gene products functions.

Gene function prediction in its general formulation is a complex classification
problem characterized by the following items: a) each gene/gene product can be
assigned to multiple terms/classes (a multiclass, multilabel classification prob-
lem); b) classes are structured according to a predefined hierarchy (a directed
acyclic graph for the Gene Ontology [1] or a tree forest for FunCat [2]); c) classes
are usually unbalanced (with positive examples usually less than negatives); d)
known gene labels are in several cases be uncertain; e) multiple sources of data
can be used to predict gene functions.

In this paper we focus on the last item, considering the problem of the pre-
diction of a subset of FunCat classes in the model organism S. cerevisiae.

The main approaches proposed in the literature can be schematically subdi-
vided in three categories: functional linkage networks, vector subspace integra-
tion and kernel fusion methods [3]. Modelling interactions between gene products
using functional linkage networks is realized through graphs, where gene prod-
ucts are modeled as nodes and relationships between genes through edges [4].
In vector space integration (VSI) different vectorial data are concatenated [5],
while kernel methods, by exploiting the closure property with respect to the
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sum or other meaningful algebraic operators represent another valuable research
direction for the integration of biomolecular data [6].

All these methods suffer of limitations and drawbacks, due to their lim-
ited scalability to multiple data sources (e.g. Kernel integration methods based
on semidefinite programming [6]), to their limited modularity when new data
sources sources are added (e.g. vector-space integration methods), or when data
are not available as relational data (e.g. functional linkage networks).

Quite surprisingly, as observed by William Noble and Asa Ben-Hur [3], only
little attention has been devoted to ensemble methods as a mean to integrate
multiple biomolecular sources of data for gene function prediction. To our knowl-
edge only few works very recently considered ensemble methods in this specific
bioinformatics context: Naive-Bayes integration of the outputs of SVMs trained
with multiple sources of data [7], and logistic regression for combining the out-
put of several SVMs trained with different data and kernels in order to produce
probabilistic outputs corresponding to specific GO terms [8].

The main aim of this work consists in showing that simple ensemble methods
can obtain results comparable with state-of-the-art data integration methods, ex-
ploiting at the same time the modularity and scalability that characterize most of
the ensemble algorithms. Indeed biomolecular data differing for their structural
characteristics (e.g. sequences, vectors, graphs) can be easily integrated, because
with ensemble methods the integration is performed at the decision level, com-
bining the outputs produced by classifiers trained on different datasets. More-
over, as new types of biomolecular data, or updates of data contained in public
databases, are made available to the research community, ensembles of learning
machines are able to embed new data sources or to update existing ones by train-
ing only the base learners devoted to the newly added or updated data, without
retraining the entire ensemble. In other words ensemble methods scale well with
the number of the available data sources, and problems that characterize other
data fusion approaches are thus avoided.

2 Methods

2.1 Ensemble methods

Data fusion can be realized by means of an ensemble system composed by learn-
ers trained on different ”views” of the data and then combining the outputs of
the component learners. Each type of data may capture different and comple-
mentary characteristics of the objects to be classified and the resulting ensemble
may obtain better prediction capabilities through the diversity and the anti-
correlation of the base learner responses.

We programmatically considered simple methods:

Weighted majority voting [10], using linear or logarithmic weights, tuned
on the F-measure estimated from the training data, since gene functional
classes are usually unbalanced.
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Naive Bayes : a combination of classifiers assuming independence between
them, that estimates the class-conditional support given the observed vector
of categorized component classifiers outputs [11].

Decision Templates : a combination method based on the comparison of a
”prototypical answer” of the ensemble for the examples belonging to a given
class (the template) with the current answer of the ensemble to a specific
example whose class needs to be predicted (the decision profile) [12].

The decision profile DP(x) for an instance x is a matrix composed by dt,j ∈[0,1]
elements representing the support (e.g. the probability) given by the tth classifier
to class ωj . Decision templates DTj are the averaged decision profiles obtained
from Xj , the set of training instances belonging to the class ωj :

DTj =
1
|Xj |

∑
x∈Xj

DP (x) (1)

By computing the similarity S between DP (x) and the decision template
DTj for each class ωj , from a set of c classes, the final decision of the ensemble
is taken by assigning a test instance x to a class with the largest similarity [12]:

D(x) = arg max
j
Sj(x) (2)

It is easy to see that with dichotomic problems the decision templates are
reduced to two-columns matrices, and the similarity (S1) for the positive class
and the similarity (S2) for the negative class can be computed as 1 minus the
normalized squared euclidean distance:

S1(x) = 1− 1
n

n∑
t=1

[DT1(t, 1)− dt,1(x)]2 (3)

S2(x) = 1− 1
n

n∑
t=1

[DT2(t, 1)− dt,1(x)]2 (4)

where DT1 is the decision template for the positive and DT2 for the negative
class. The final decision of the ensemble is:

D(x) = arg max
{1,2}

(S1(x),S2(x)) (5)

2.2 Kernel fusion and vector space integration

Kernel fusion (KF) for data integration is based on the closure property of kernels
with respect to the sum or other algebraic operators [6]. In our experiments we
integrated the different data sets by simply summing their Gram matrices, and
then we trained the SVMs directly with the resulting matrix. Vector space inte-
gration (VSI) consists in concatenating the vectors of the different data sets [5].
The resulting concatenated vectors are used to train a SVM. Note that training
a linear SVM with concatenated vectors (VSI) is equivalent to kernel fusion with
linear kernels. In our experiments we used gaussian kernels.

Simple ensemble methods vs. data integration methods: MLSB’09 97



Table 1. Datasets

Code Dataset examples features description

Dppi1 PPI - STRING 2338 2559 protein-protein interaction data from [13]
Dppi2 PPI - BioGRID 4531 5367 protein-protein interaction data from the

BioGRID database [14]
Dpfam1 Protein domain log-E 3529 5724 Pfam protein domains with log E-values

computed by the HMMER software toolkit
Dpfam2 Protein domain binary 3529 4950 protein domains obtained from Pfam

database [15]
Dexpr Gene expression 4532 250 merged data of Spellman and Gasch exper-

iments
Dseq Pairwise similarity 3527 6349 Smith and Waterman log-E values between

all pairs of yeast sequences

3 Experimental results

Even if the growing rate of the amount of biomolecular data available for many
species was constantly increasing in the last years, the model organisms with a
consistent amount of literature inherent to data fusion based gene function pre-
diction are actually reduced to S.cerevisiae and M.musculus. Despite the avail-
ability of a well established public benchmark dataset, such as the one provided
during the MouseFunc contest [18], a recent comparison between many model
organisms showed that the fraction of genes annotated with experimental evi-
dence is about 30% larger in S.cerevisiae than in M.musculus (85.4% and 57.8%
respectively for the yeast and mouse model organisms) [19]. We thus decided
to use yeast data for our experiments. In order to maximize the effective use of
the larger experimental coverage of gene functional annotations available for the
yeast, we also adopted as a reference functional ontology, the MIPS Functional
Catalogue (FunCAT), which is composed by annotations mainly based on exper-
imental evidences [2], allowing us to minimize the impact of non experimental
functional annotations.

We predicted the top-level 15 functional classes of the FunCat taxonomy of
the model organism S. cerevisiae, using 6 different sources of data (Tab. 1). Each
dataset was split into a training set and a test set (composed, respectively, by the
70% and 30% of the available samples), considering yeast genes common to all
data sets (about 1900) and with at least 1 FunCat annotation. A 3-fold stratified
cross-validation has been performed on the training data for model selection,
using gaussian SVMs with probabilistic output [9] as base learners for ensemble
methods, and for VSI and KF data integration. We compared the performances
of single gaussian SVMs trained on each data set with those obtained with vector-
space-integration (VSI) techniques, kernel fusion through the sum of gaussian
kernels, and with the ensembles described in Sect. 2.1.

Table 2 shows the average F-measure, recall, precision and AUC across the
15 selected FunCat classes, obtained through the evaluation of the test sets
(each constituted by 570 genes). The four first columns refer respectively to the
weighted linear, logarithmic linear, decision template and naive Bayes ensembles;
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VSI and KF stands respectively for vector space integration and kernel fusion,
Davg represents the average results of the single SVMs across the six datasets,
and Dppi2 represents the single SVM that achieved the best performance, i.e.
the one trained using protein-protein interactions data collected from BioGrid.
Tab. 3 shows the same results obtained by each single SVM trained on a specific
biomolecular data set.

Looking at the values presented in Tab. 2, on the average, data integration
through simple ensemble methods provide better results than single SVMs, VSI
and Kernel fusion, independently of the applied combination rule. In particular,
Decision Templates achieved the best average F-measure, and ensemble methods
as a whole the best AUC. Among the ensemble of classifiers, with respect to
the AUC, the worst performing method is the Naive Bayes combiner albeit its
performances are still, on the average, higher than the ones reported for VSI,
Kernel fusion and the single classifiers. Precision of the ensemble methods is
relatively high: this is of paramount importance to drive the biological validation
of ”in silico” predicted functional classes: considering the high costs of biological
experiments, we need to obtain a high precision (and possibly recall) to be sure
that positive predictions are actually true with the largest confidence.

To understand whether the differences between AUC scores in the 15 di-
chotomic tasks are significant, we applied a non parametric test based on the
Mann-Whitney statistic [16], using a recently proposed software implementa-
tion [17]. Tab. 4 shows that at 0.01 significance level in most cases there is no
significant difference between AUC scores of the weighted linear and logarithmic
ensembles (Elin and Elog) and the Decision Template (Edt) combiner. A dif-
ferent behavior is observed for the Naive Bayes combiner: its performances are
comparable to the ones obtained by the other ensemble methods only in 2 over
15 classification tasks and worse in the remaining 13.

Most interestingly, ensemble methods significantly outperform the other data
integration methods. For instance, wins-ties-losses of Elin vs V SI are 13−2−0,
and 9 − 6 − 0 vs KF ; Naive-Bayes, the worst performing ensemble method,
achieves 9− 6− 0 wins-ties-losses with V SI and 5− 10− 0 with KF . It is worth
noting that, among the tested ensemble methods, Elin, Elog and Edt undergo no
losses when compared with single SVMs (Tab. 4, bottom): we can safely choose
any ensemble method (but not the Naive Bayes combiner) to obtain equal or

Table 2. Ensemble methods, kernel fusion and vector space integration: average F-
score, recall, precision and AUC (Area Under the Curve) across the data sets.

Metric Elin Elog Edt ENB V SI KF Davg Dppi2

F 0.4347 0.4111 0.5302 0.5174 0.3213 0.3782 0.3544 0.4818

rec 0.3304 0.2974 0.4446 0.6467 0.2260 0.3039 0.2859 0.3970

prec 0.8179 0.8443 0.7034 0.5328 0.6530 0.6293 0.5823 0.6157

AUC 0.8642 0.8653 0.8613 0.7933 0.7238 0.7775 0.7265 0.8170
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Fig. 1. Comparison of ROC curves between different data integration methods. Elin:
ensemble weighted majority voting; ENB : Naive-Bayes ensemble integration; KF : ker-
nel fusion; V SI: vector space integration.
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Table 3. Single SVMs: average F-score, recall, precision and AUC. Each SVM is iden-
tified by the same name of the data set used for its training (Tab. 1).

Metric Dppi1 Dppi2 Dpfam1 Dpfam2 Dexpr Dseq

F 0.3655 0.4818 0.2363 0.3391 0.2098 0.4493

rec 0.2716 0.3970 0.1457 0.2417 0.1571 0.5019

prec 0.6157 0.6785 0.7154 0.6752 0.3922 0.4162

AUC 0.7501 0.8170 0.6952 0.6995 0.6507 0.7469

Table 4. Results of the non-parametric test based on Mann-Whitney statistics to com-
pare AUCs between ensembles, VSI, Kernel fusion and single SVMs. Each entry rep-
resents wins-ties-losses between the corresponding row and column at 0.01 significance
level. Top: Comparison between ensemble methods, VSI and kernel fusion; Bottom:
Comparison between data integration methods and single SVMs.

V SI Elog Elin Edt ENB
Elog 13-2-0 - - - -
Elin 13-2-0 0-14-1 - - -
Edt 13-2-0 1-13-1 1-11-3 - -
ENB 9-6-0 0-2-13 0-2-13 0-2-13 -
KF 3-12-0 0-6-9 0-6-9 0-6-9 0-10-5

Dppi1 Dppi2 Dpfam1 Dpfam2 Dexpr Dseq
Elin 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
Elog 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
Edt 11-4-0 4-11-0 15-0-0 14-1-0 15-0-0 13-2-0
ENB 5-10-0 2-11-2 9-6-0 8-7-0 12-3-0 7-8-0
V SI 1-11-3 0-8-7 2-11-2 1-14-0 4-11-0 0-12-3
KF 1-14-0 0-9-6 5-10-0 5-10-0 11-4-0 3-12-0

better results than any of the single SVMs. On the contrary in many cases V SI,
ENB and the kernel fusion methods obtained worse results than single SVMs,
although performances achieved by the Naive Bayes combiner and the kernel
fusion methods are, in general, better than those obtained by VSI. Nevertheless,
we can observe that a single SVM trained with Ppi-2 data achieves good results
(11 ties with ensembles and an average AUC ' 0.81 w.r.t. 0.86 of the ensembles,
Tab. 2 and 4), showing that large protein-protein interactions data sets alone
provide information sufficient to correctly predict several FunCat classes.

Fig. 1 compares the ROC curves of the different data integration methods
used in our experiments. ROC curves of weighted majority voting (Elin) are
consistently above the corresponding ROC curves of kernel fusion and vector
space integration for all the considered FunCat classes. ROC curves of Naive
Bayes combiner are below those of kernel fusion only for four classes: “Energy”,
“Metabolism”, “Regulation”, “Cell rescue” and “Interaction with the environ-
ment”.
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4 Conclusions

The main objective of this contribution is to demonstrate that simple ensemble
methods are competitive with state-of-the-art methods for gene function predic-
tion based on heterogeneous biomolecular data integration.

It is well-known that gene function prediction methods need to take into
account the hierarchical relationships between classes to improve their predic-
tions [7, 8, 20]. Nevertheless, in this investigation we focused on data integration,
in order to study the improvement due to the usage of multiple sources of data,
without exploiting any knowledge about the hierarchical relationships between
classes. In this way we can separate the contribution due to data fusion tech-
niques from the improvement due to hierarchical methods.

Considering the increasing growing rate of available biomolecular data, the
modularity and scalability that characterize ensemble methods can favour an
easy update of existing sources of data and an easy integration of new ones.
Our preliminary experiments show that relatively simple ensemble methods are
competitive with kernel fusion and vector space integration, two of the most
largely applied machine learning data integration techniques for gene function
prediction. This could seem quite surprisingly, but considering the uncertainty
that characterize both annotations and measurements of data values, we can
expect that relatively simple methods are able to nicely work in a similar context.
Moreover it is worth noting that each type of data can only capture a particular
characteristic of a protein, and for different functional classes the same type of
data can be highly informative or completely unuseful to discriminate positive
and negative examples. For these reasons the inherent modularity and adaptivity
of ensemble systems can explain their effectiveness for the integration of multiple
biomolecular data sources. In particular we think that ensemble methods devoted
to biomolecular data integration can be a valuable research line to improve the
accuracy of gene function prediction problems.
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Abstract. The scientific literature is a rich and challenging data source
for research in systems biology, providing numerous interactions between
biological entities. Text mining techniques have been increasingly useful
to extract such information from the literature in an automatic way, but
up to now the main focus of text mining in the systems biology field has
been restricted mostly to the discovery of protein-protein interactions.
Here, we take this approach one step further, and use machine learning
techniques combined with text mining to extract a much wider variety of
interactions between biological entities. Each particular interaction type
gives rise to a separate network, represented as a graph, all of which can
be subsequently combined to yield a so-called integrated network repre-
sentation. This provides a much broader view on the biological system
as a whole, which can then be used in further investigations to analyse
specific properties of the network.

1 Introduction

A wealth of biological information is currently recorded in scientific publications,
which are easily accessible through online literature services like PubMed1. How-
ever, such resources are expanding exponentially and in order to keep up with
the recent literature and retrieve relevant biological information, automated sys-
tems have become a time saving necessity.

Text mining methods are data mining techniques that focus on extracting rel-
evant knowledge from these largely unstructured texts. Their use in systems bi-
ology started with simple, co-occurrence based methods that suggested relations
between entities when they appeared in the same sentence [Ding et al, 2002], typ-
ically exhibiting high recall, but low precision [Hoffmann and Valencia, 2004]. As
high precision frameworks are often preferred in systems biology, especially when
integrating different data sources, more elaborated techniques, either based on
hand-crafted rules [Fundel et al, 2007] or machine learning methods have been
introduced. We will focus here on the latter techniques as they scale better to

1 http://pubmed.gov
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large datasets, and can be easily retrained when more data becomes available.

Up to now, the main focus of text mining techniques that rely on machine
learning approaches has been the automatic extraction of protein-protein inter-
actions, or the association of genes to certain diseases. A number of evaluation
corpora have been built to assess the performance of techniques on the first
of these tasks [Pyysalo et al, 2008,Van Landeghem et al, 2008a]. Recently, the
BioNLP’09 shared task was initiated as a community-wide effort to leverage the
scope of text mining techniques to extract more complex events from text, in
order to capture a wider variety of interactions and thus gain more knowledge
from information encoded in the literature [Kim et al., 2009].

The main task in this challenge was to identify as good as possible 9 different
types of bio-molecular events. For each event, the organizers provided a set of
annotated PubMed abstracts, which could be used by the participants to train
their models. Afterwards, a separate validation set was provided, allowing par-
ticipants to evaluate their predictions, and finally an independent test set was
provided to which all participants were evaluated.

In this work, we describe a machine learning approach that uses graph-based
features from sentence representations to detect these different types of inter-
actions, and subsequently uses them to construct an integrated network that
contains all high-confidence predictions. The remainder of the manuscript is
structured as follows. First we elaborate on the methodology we used to convert
these problems into a machine learning setting, outlining the general prepro-
cessing of the documents, the applied machine learning techniques, and the final
postprocessing to ensure a high-precision approach. Next, we present the results
of this analysis: the evaluation of the whole framework on the BioNLP’09 eval-
uation and test set, and the construction of an integrated network using these
predictions. We conclude by highlighting future perspectives and challenges that
remain in this domain.

2 Methods

The core part of the BioNLP’09 challenge concerned the automatic detection and
characterization of bio-molecular events from text. There are 9 distinct event
types, six of which influence proteins directly, further referred to as ‘Protein
events’, and three which describe ‘Regulation events’. Five of the protein events
are unary: Localization, Gene expression, Transcription, Protein catabolism and
Phosphorylation. The sixth protein event, Binding, can be either related to one
protein (e.g. protein-DNA binding), two proteins (e.g. protein-protein interac-
tion) or more (e.g. a complex). The three types of Regulation events are the
following: Regulation (unspecified), Positive regulation and Negative regulation.
Each of them can be unary or binary. In the latter case, an extra argument
specifying the cause of the regulation is added. Each argument of a Regulation
event can be either a protein or any other event. This offers opportunities to
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Fig. 1. Example of a dependency graph for the sentence ‘MAD-3 masks the nuclear
localization signal of p65 and inhibits p65 DNA binding’. The three events represented
in this sentence are indicated in the respective subgraphs.

detect different levels of interactions, and thus detect Regulation events in an
iterative way.

The detection of Protein and Regulation events can now be stated as a set of
binary classification problems, one for each event. A given potential occurrence
of an event should then be scored by a classification model, which would either
accept or reject the current example as being an instance of the particular event
type. We will now go into more detail on how to transform the unstructured text
data into a well defined classification task.

2.1 Data preprocessing

A challenging problem in text mining is to find an appropriate representation
of the text, allowing machine learning techniques to make use of features that
represent the key information to solve the task at hand. A few steps should be
performed in order to transform the data into such a useful format.

In a first step, informative sentences containing biological entities are selected
(information retrieval), and those key entities are identified and tagged in the
sentence (named entity recognition). Subsequently, a deep syntactic parsing of
each sentence was performed using the Stanford parser [de Marneffe et al, 2006],
resulting in part-of-speech tags and dependency graphs. A dependency graph
models the syntactic structure of a sentence, and is often used in many machine
learning approaches as a structured data type to be used as input for the clas-
sification model [Zelenko et al, 2008,Kim et al, 2008].

Figure 1 shows an example of a dependency graph for the sentence ‘MAD-
3 masks the nuclear localization signal of p65 and inhibits p65 DNA binding’.
This sentence contains three events to be detected by the system: 1) a Binding
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Event type # Features # neg. # pos. % pos.
inst. inst. inst.

Localization 18 121 3415 249 7
Single binding 21 332 3548 522 13

Multiple binding 11 228 2180 185 8
Gene expression 31 332 5356 1542 22

Transcription 30 306 6930 489 7
Protein catabolism 1 883 175 96 35

Phosphorylation 2 185 163 153 48

Unspecified regulation (Unary) 27 915 6076 408 6
Positive regulation (Unary) 48 944 13834 1367 9
Negative regulation (Unary) 16 673 3233 489 13

Unspecified regulation (Binary) 4 239 778 81 9
Positive regulation (Binary) 19 468 5405 249 4
Negative regulation (Binary) 4 166 819 29 3

Table 1. Statistics of the training data set.

event (p65 DNA binding), 2) a Negative Regulation event (MAD-3 masks the
nuclear localization signal of p65) and 3) a higher level Negative regulation event
(MAD-3 inhibits p65 DNA binding), where one of the arguments is a protein
(MAD-3) and the other is an event in itself (p65 DNA binding).

To couple the words occurring in a sentence to a particular event, dictionaries
of trigger words associated to each event were used (e.g. ‘interaction’ for Bind-
ing and ‘secretion’ for Localization). From the training data, we automatically
compiled such dictionaries of triggers for each event type, applying the Porter
stemming algorithm [Porter, 1980] to each trigger. This resulted in some entries
in the dictionaries which were of limited use, such as ‘through’ for Binding, or
‘are’ for Localization. Such words are too general or too vague, and will lead to
many negative and irrelevant instances. For this reason, we manually cleaned
the dictionaries, only keeping specific triggers for each event type.

2.2 Model setup

To extract useful features from the dependency graph, we used a rich feature rep-
resentation based on our earlier work on predicting protein-protein interactions
[Van Landeghem, 2008b]. The feature sets are a combination of information de-
rived from the dependency tree (such as properties of the subgraph covering the
event and lexical information of the trigger words) and information concerning
the occurrence of words in the subgraph. The following features were extracted:

– A bag-of-words (BOW) approach which looks at all the words that appear at
a vertex of the subgraph. This automatically excludes uninformative words
such as prepositions. Here we used stemmed trigrams (succesions of three
words) as BOW features.
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– Lexical and syntactic information of triggers (stemmed versions of each word,
as well as the associated part-of-speech tag generated by the parser).

– Size of the subgraph.
– Length of the sub-sentence.
– Extra features for Regulation events, storing whether the arguments are

proteins or events, and specifying the exact event type.
– Vertex walks which consist of two vertices and their connecting edge. For

these patterns, again lexical as well as syntactic information is kept. When
using lexical information, protein names and triggers were blinded in order
to extract more general patterns (e.g. ‘trigger nsubj protx’ which expresses
that the given protein is the subject of a trigger).

The resulting datasets are inherently high-dimensional and very sparse. Ta-
ble 1 shows the statistics of the training set for all event types. To deal well with
these sparse, high-dimensional and class imbalanced datasets, SVMs are a nat-
ural choice for the classification model [Boser et al, 1992]. We used the LibSVM
implementation of WEKA for our experiments, using the radial basis function
(RBF) kernel as a default. As we were confronted with a separate validation and
test set, only an internal 5-fold crossvalidation loop on the training data was used
to optimize the C-parameter of the SVM, and the classification performance on
the validation and test sets were used to assess model performance.

Finally, a number of custom-made post-processing modules were applied to
the resulting predictions, aiming to further reduce false positives and hence im-
prove the precision of our method. These include removing the weakest pre-
dictions if multiple events were predicted for the same trigger word, as well as
reducing the number of predictions based on overlapping trigger words.

2.3 Integrated network construction

We take a graph based approach to combine the predictions of the different Pro-
tein and Regulation events. Consider a set of interaction events {I1, I2, · · · , IN}
to integrate into a network. We can then associate to each of the events Ii a
graph Gi, obtained using the predictions of the SVM model for event Ii. Note
that there exists a heterogeneity in the graphs, as there might be multiple edges
between two nodes in a graph (due to more than one prediction for a certain
edge), and that some of the edges may be directed (e.g. A regulates B) while
others may be undirected (e.g binding of C and D). Furthermore, all edges are
weighted by the confidence of the associated prediction (see further).

A convenient representation for each graph Gi is its associated matrix Gi(jk)
where each entry in the matrix is a set of weigthed connections between node j
and node k. If there is no edge between node j and node k, then Gi(jk) = ∅.
For undirected edges, the associated weight wjk is represented both in Gi(jk)
and Gi(kj), while for directed edges the weight is only added to the set repre-
senting the correct direction, this representation thus being a generalized form
to combine both directed and undirected information.
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Event type Validation set Test set
Recall Precision F-score Recall Precision F-score

Localization 77.36 91.11 83.67 43.68 78.35 56.09
Binding 45.16 37.21 40.80 38.04 38.60 38.32

Gene expression 70.79 79.94 75.08 59.42 81.56 68.75
Transcription 60.98 75.76 67.57 39.42 60.67 47.79

Protein catabolism 80.95 89.47 85.00 64.29 60.00 62.07
Phosphorylation 68.09 88.89 77.11 56.30 89.41 69.09

Regulation 23.67 41.67 30.19 10.65 22.79 14.52
Positive regulation 21.56 38.00 27.51 17.19 32.19 22.41
Negative regulation 30.10 41.26 34.81 22.96 35.22 27.80

Table 2. Performance evaluation of all events for the validation and test datasets.

The weights on the edges are obtained by the classification model. For the
SVM models, the distance to the hyperplane of each prediction is scaled between
0 and 1 such that the prediction threshold above which to decide on a positive
prediction (this threshold varies per event) corresponds to a weight of 0.5.

It has to be noted that for some unary events, we may only know the effect,
but not the causal node. In these cases, we introduce an artifical causal node
for the effect node, which may be filled in later when more text is analysed. An
integrated network can then be constructed by aggregating all matrices Gi(jk)
into a three-dimensional tensor T (jkl) with dimensions M×M×N , where M is
the cardinality of the union of all nodes in Gi, i = 1 · · ·N and N is the number of
events to integrate. The tensor entry T (jkl) represents a connection from node
j to node k for event type l. For visualisation purposes, we only keep all positive
predictions, and discard all edges for which T (jkl) < 0.5.

3 Results

3.1 Predictive performance

To evaluate predictive performance, participants of the BioNLP’09 challenges
could make use of a validation set to eventually finetune some parameters of their
systems. However, performance could only be measured indirectly by submitting
the predictions through a web interface, which then returned the evaluation
measures (recall, precision and F-score). This only allowed for a rough, manual
finetuning of some of the systems parameters, as an automatic exploration of
parameter settings using this web interface was not possible. In our case, we
only finetuned for each event the prediction threshold above which to consider
a prediction to be positive.

Similarly, the final results on the test set were also assessed in a blind way:
participants could only upload their predictions for this set one time, and after
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Team Protein Events Binding Regulation All

UTurku 70.21 44.41 40.11 51.95
JULIELab 68.38 41.20 34.60 46.66
ConcordU 61.76 27.20 35.43 44.62

UT+DBCLS 63.12 31.19 32.30 44.35
VIBGhent 64.59 38.32 22.41 40.54

UTokyo 55.96 41.10 20.09 36.88
UNSW 55.39 28.92 20.90 34.92
UZurich 53.66 33.75 19.89 34.78

ASU+HU+BU 56.82 27.49 09.01 32.09
Cam 51.79 18.14 15.79 30.80

Table 3. Performance comparison for the top ten performing teams. Numbers shown
denote the F-measure for the three types of events (columns Protein, Binding, and
Regulation), as well as the overall performance (column All).

the submission deadline all evaluations were returned to the participants. Ta-
ble 2 shows the evaluation measures for our system on both the validation (using
optimized thresholds) and test set.

As can be expected, performance on the test set is lower than on the vali-
dation set, the decrease in F-measure ranging from only about 2% for Binding
events, to 27% in the case of Localization events. In general, we achieve a high
precision for Protein events: almost all results achieve a precision of 60% or more.
Another trend is the fact that predicting Protein events achieves much higher
performance than the prediction of Regulation events, a phenomenon that was
observed by all participants in the challenge. This can be explained by the fact
that the prediction of Regulation events largely depends on predicted Protein
events (e.g. for higher level regulation events), thus causing false positives of pre-
dicted Protein events to cause even more false positive higher level regulation
events.

To put these results into the context of the BioNLP’09 challenge, Table 3
compares the results of the ten best performing teams, out of 24 participating
teams. Our team (VIBGhent) was ranked third for detecting Protein Events,
fourth for detecting Binding Events, and fifth for detecting Regulation Events,
resulting in an overall fifth ranking.

3.2 Constructing integrated networks

We created the tensor T (jkl) for a set of six events {I1, I2, I3, I4, I5, I6} =
{Positive regulation, Negative regulation, Unspecified regulation, Binding,
Transcription, Phosphorylation}. Figure 2 shows a visualization of a subgraph of
the integrated network, where the edge thickness corresponds to the prediction
confidence of the interaction, and colors display different types of interactions
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Fig. 2. Visualization of a subgraph of the integrated network, constructed on the com-
bined results of the validation and the test set.

(black for Binding and unspecified Regulation events, orange for Phosphory-
lation, blue for Transcription and green/red for Positive/Negative Regulation
events). Furthermore, Regulation events are displayed by dashed lines, and Pro-
tein events by full lines.

In a subsequent stage, the tensor T (jkl) can be used to infer new biolog-
ical knowledge, such as indirect interactions and pathways. An example of an
indirect interaction, derived from the network depicted in Figure 2 is the pos-
itive regulation of GM-CSF by Tax, which is in turn negatively regulation by
Tax UNRC, which suggests an indirect regulation of GM-CSF by Tax UNRC.

4 Conclusions and future work

In this work we presented a text mining approach that extracts various types
of interactions from scientific literature. This information was used in a second
stage to construct integrated networks, using the strength of the predictions as
confidence weights for the connections in the network. As the application of text
mining techniques for such problems is still in its childhood, improving the pre-
dictive performance of these techniques will remain a key challenge, as well as
recognizing more adequately the specific type of interaction (e.g. protein-protein,
protein-DNA, RNA-protein). Furthermore, we already performed some prelimi-
nary work on detecting speculation and negation of biological events, which will
be useful to detect modes of (un)certainty about certain facts stated.
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From a data integration point of view, we aim to combine the results obtained by
text mining with interactions identified by other data sources (either experimen-
tally verified or predicted) in order to increase the robustness of the networks.
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Abstract. In this paper we investigate the problem of evaluating ranked
lists of biomarkers, which are typically an output of the analysis of high-
throughput data. This can be a list of probes from microarray experi-
ments, which are ordered by the strength of their correlation to a disease.
Usually, the ordering of the biomarkers in the ranked lists varies a lot if
they are a result of different studies or methods. Our work consists of
two parts. First, we propose a method for evaluating the ”correctness”
of the ranked lists. Second, we conduct a preliminary study of different
aggregation approaches of the feature rankings, like aggregating rank-
ings produced from different ranking algorithms and different datasets.
We perform experiments on multiple public Neuroblastoma microarray
studies. Our results show that there is a generally beneficial effect of ag-
gregating feature rankings as compared to the ones produced by a single
study or single method.

Key words: feature ranking evaluation, biomarker discovery, ranking
aggregation

1 Introduction

In medicine, the progress or presence of some disease is determined by measuring
certain biological parameters. These parameters are commonly called biomarkers
and can range from blood pressure to the expression of a certain gene. Here, we
focus on biomarkers derived from different types of high-throughput data.

We consider the process of biomarker discovery as the process of determining
markers which have the strongest correlation to the presence or status of a
certain disease. For example, given a microarray experiment, the output would
be a list of probes ranked according to their differential expression. The main
challenge in biomarker discovery from high dimensional data arises from having
a small number of available biological samples, as well as from the inherent high
variability of the data.

In machine learning terminology, biomarker discovery translates into the task
of feature ranking and feature selection. Although these two tasks are related,
they produce different result. On one hand, feature ranking provides an assess-
ment of the ”importance” of individual features to a target concept. On the
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other hand, feature selection algorithms evaluate the ”importance” of a subset
of features as a whole. This does not mean that all (or any) of the features in the
subset have high individual importance. In the context of biomarker discovery,
the task of feature selection would be more appropriate for diagnostic markers
while feature ranking would be more useful when searching for individual drug
targets.

The estimation of importance in feature selection and feature ranking is
different. In feature selection, the feature subsets are evaluated explicitly via
a predictive model (classifier), built from just those features. As for feature
ranking, there is no direct way of evaluating the ”correctness” of the order of
the individual features. Therefore, our work in this paper focuses on developing
an evaluation methodology for feature rankings.

We present our work as follows: First, in Section 2 we define the problem
under consideration. We then propose and describe our evaluation methodol-
ogy in Section 3, where we also consider different approaches of aggregating
feature rankings. In Section 4 we outline the experimental evaluation and pro-
vide description of the data used. The outcome of the experiments is presented in
Section 5. Finally, we discuss the results and draw some conclusions in Section 6.

2 Problem description

We formalize the problem setting as follows: given is dataset D, consisting of k
instances (samples) D = {S1, S2, ..., Sk}. Each sample is a vector of n values,
Si = (vi1, vi2, ...vin). Each value of an instance represents a certain property or a
so-called feature f of that instance. Each feature has a specific value for a specific
sample, i.e., fj(Si) = vij . Simply put, each row in a dataset is an instance Si,
and each column is the vector of values of a feature fj .

In this kind of a setting, a feature of particular interest is called a target
feature ftarget , for example the status of some disease. If we apply on the dataset
D a ranking algorithm R(D, ftarget), it outputs a list of features F = [f1, ..., fn],
ordered by decreasing importance Imp(fj) with respect to ftarget. The function
Imp(fj) is different for different ranking methods.

In this paper we would like to evaluate how correct is the ordering of features
in the ranked list, considering that we never know the ground truth ranking.
We will refer to this problem as a problem of evaluating feature rankings. This
kind of an evaluation methodology, in terms of biomarker discovery, would help
answer the question: Which ranking method and/or which study, produce the
most ”correct” ranked list of genes?

3 Methodology

3.1 Error curve

We approach the problem of evaluating feature rankings by following the idea
that the ”correctness” of the feature rank is related to predictive accuracy. A
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good ranking algorithm would put on top of a list a feature that is most im-
portant, and at the bottom a feature that is least important w.r.t. some target
concept. All the other features would be in-between, ordered by decreasing im-
portance. By following this intuition, we evaluate the ranking by performing
a stepwise feature subset evaluation, with which we generate a so-called error
curve.

…

…

Data

Ranking 
Method

f1

f2

…

fn

Create data 
subsets

f1

f1

f1

f2

f2 fn

Testing 
Error n

Testing 
Error 2

Testing 
Error 1

… …

Build and evaluate 
predictive models

Feature ranking

Fig. 1. Constructing an error curve

We present the process of generating the error curve on Figure 1. We begin
with a dataset D on which we apply an arbitrary ranking algorithm R. This
produces a feature ranking F = [f1, ..., fn], where f1 denotes the top-ranking
feature and fn the bottom-ranked one. We then proceed by generating n data
subsets {Df1..1 , Df1..2 ..., Df1..n

} from the original dataset D. We construct the
first data subset Df1..1 with only the top-ranked feature f1. We then add to this
subset the second ranked feature f2, denoted by Df1..2 . This process is continued
iteratively until we add the bottom ranked feature fn to the Df1..n−1 subset,
thus yielding Df1..n

. Finally, we build n predictive models from each of the data
subsets and we estimate their error. The points of the error curve are each of
the n estimated errors [E1, ..., En]. This procedure is summarized in Table 1.

The main idea behind the experimental setup is to evaluate and compare the
behavior of different ranking algorithms and different aggregation methods, on
single studies and as well across studies.

3.2 Aggregating feature rankings

We consider aggregating feature rankings an important practical issue when
working with high-dimensional data. Considering the plethora of feature ranking
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Table 1. Constructing an error curve

Input: Data D, Ranking method R
Output: Error curve E

E ⇐ ∅
Df1..0 ⇐ ∅
F ⇐ FeatureRanking(R, D)
for i = 1 to n do

Df1..i ⇐ Df1..i−1 ∪ fi

Pi ⇐ BuildPredictiveModel(Df1..i)
E ⇐ E ∪ EstimateError(Pi)

end for
return E

methods and datasets that are available, it is reasonable to assume that it might
be beneficial to join the different information (rankings) that they provide.

When aggregating feature rankings, there are two issues to consider. The
first one is which base feature rankings to aggregate. There are different ways
to generate the base feature rankings: from the same dataset, but by different
ranking method; from different datasets but the same ranking method or from
different subsamples of the same dataset and the same ranking method. The
second issue concerns the type of aggregation function to use. Many functions
available, and we believe that this is a topic worth exploring by itself, which
is out of the scope of this paper. For our initial experiments we used simple
methods, like taking the mean or median of the ranks.

4 Experimental setup

4.1 Data description

We performed our experiments on Neuroblastoma studies. Neuroblastoma is the
most common extracranial solid tumor of childhood. We considered the status
of relapse/no relapse of a patient, as a target concept of interest. The derived
markers could be useful for determining the course of treatment of a patient.

We focus on three Affymetrix microarray studies, namely: DePreter et al. [3]
(17 samples), Schramm et al. [11] (63 samples) and Wang et al. [12] (99 samples).
For practical purposes when presenting the results we refer to them as the ”D”,
”S” and the ”W” study.

4.2 Experimental design

We can divide our experiments in two parts: individual study evaluation and
cross-study evaluation.
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In the individual study setting, we focus on comparing the performance of
different ranking approaches. We considered four different feature ranking meth-
ods: a simple method based on Information Gain and also more complex methods
like Random Forests [2], the ReliefF algorithm [9] and SVM [5]. Furthermore,
we investigate if it is beneficial to aggregate the feature rankings produced by
different methods on the same study, intuitively similar to [10] and [6]. We con-
sidered simple aggregation methods as the Mean rank, Median rank, as well as
Min and Max rank.

When investigating the cross-study setting, we considered only one ranking
method, namely ReliefF. The idea initially is to compare how feature rankings
learned on one study behave if they are tested on another study. Then we exam-
ine how that compares to aggregating feature rankings from two different studies
and testing on the third.

Table 2. Cross-study evaluation

S ⇒ D D ⇒ S D ⇒ W

W ⇒ D W ⇒ S S ⇒ W

agg {S, W} ⇒ D agg {D, W} ⇒ S agg {D, S} ⇒ W

We summarize the cross-study setting in Table 2. We use ”D”,”S” and ”W”
to denote different studies and ”A ⇒ B” to signify that we build the feature
ranking on study ”A” and evaluate it on study ”B”. When aggregating the
feature rankings from the different studies (agg {...}), we used the previously
mentioned aggregation methods.

In both experimental settings, for estimating the error we used the .632+
Bootstrap method [4]. This method combines the leave-one-out cross validation
with bootstrap re-sampling. As noted in [4] and [1] this method is well suited
for error estimation, especially when working with high-dimensional data. In our
setting, we use 20 bags (bootstrap re-sampling), which was previously empirically
estimated. We use Naive Bayes as a predictor when constructing the error curve.
Although other predictive models were also tested (e.g. SVMs, Decision Trees),
we chose Naive Bayes as a method that is dissimilar to any of the feature ranking
methods used. For example, we did not wanted to use SVM-RFE as a feature
ranking method and then use SVM as a predictive model for evaluation, in order
to avoid favoring SVMs as a ranking method.

5 Results

5.1 Individual studies

We present the testing error curves from the single study experiments on Fig-
ure 2. On the left-hand side, we show the comparison between the different
ranking algorithms, while on the right-hand side the error curves of different
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aggregation methods are shown. The figures are ordered in such a way that the
results for the smallest dataset (De Preter) are the first figures in a column,
while for the largest one (Wang) the results are the last ones in a column.

If we first consider the comparison of different ranking algorithms, it is not
immediately obvious which one performs the best. However, it seems that SVM-
RFE and ReliefF seem to produce the best ranking, according to the error curves.
Also, there is a noticeable effect of the dataset size, where the biggest difference
in the curves is for the smallest (De Preter) dataset. Furthermore, if we take
a look at the comparisons between the different ranking aggregation methods,
the median method has an overall ”better” error curve. The median error curve
is comparable to the individual ranking algorithms, but it is noticeably less
variable.

5.2 Cross studies

In a similar fashion, we present the results from the cross-studies experiments on
Figure 3. The results from the different aggregation methods that are used for
combining the feature rankings from the different studies are on the right-hand
side figures ((b), (d) and (f)). The comparison between the single study feature
ranking and the best aggregated feature ranking, tested on a separate study,
are presented on the left-hand side ((a), (c) and (e)). The ordering according to
dataset size, also applies here.

The comparison between the different aggregation methods, does not reveal
a noticeable difference, although when testing on smaller studies there is great
variability of the error curves as compared to testing on bigger studies.

If we take a look at Figure 3(a), it compares between three different feature
rankings tested on the De Preter dataset. The feature ranking from the biggest
dataset (Wang) is better, but it is worse than the feature ranking produced by
aggregating the two different rankings from the Schramm and Wang datasets.

When testing on the Schramm dataset (3(c)), the feature ranking from the
smallest dataset (De Preter), performs obviously much worse than the one de-
rived from the biggest dataset (Wang). However, aggregating the feature rank-
ings also does not produce a better ranking. We believe that this is due to the fact
that when combining the feature rankings from the two studies, the De Preter
derived one is of much worse quality and therefore it has a detrimental effect on
the overall aggregated rank.

Finally, we show the error curves, when testing on the Wang dataset (Fig-
ure 3(e)). On first look, the error curve of the feature ranking derived from the
aggregation, seems to be somewhat better than the others. Although a little after
the beginning of the curves the error seems to be the same, the curve from the
aggregated feature rankings is much less variable than the others. Also it seems
that at a very later stage it improves, which we think is due to aggregating an
unreliable feature ranking derived from a particularly small dataset.
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Fig. 2. Single study comparisons
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Fig. 3. Cross study comparisons
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6 Conclusions and further work

In this paper we presented a methodology for evaluating feature rankings. The
method relates the ”correctness” of the feature ranking to the notion of error of
predictive models. We use the so-called error curve, constructed as described in
Section 3.1, as an indicator for the quality of the produced feature rankings.

Furthermore, the developed method is used for comparing different ranking
approaches and different aggregation approaches for combining feature rankings.
From the results presented in Section 5 we can discern two interesting points.The
first is related to the size of the error of the curves and the second is related to
the variability of the error curves.

Concerning the error size, it is difficult to say with certainty which one is the
best feature ranking method or aggregation approach. However, for the ranking
methods, it seems that ReliefF and SVMs have the lowest errors. When aggre-
gating feature rankings from different methods, the median aggregation function
seems to have the lowest error. The differences in error are very much related to
the study size, where bigger differences between ranking algorithms appear for
smaller dataset sizes.

The aggregation function used when aggregating feature rankings from dif-
ferent studies seems not to have a particular effect on the testing error. How-
ever, when comparing the error curves of feature rankings produced by a single
study and the aggregated ones, there is an obvious decrease in the error size.
This is especially visible when combining bigger with smaller datasets, although
sometimes a too small dataset might have detrimental effect on the aggregated
ranking. This is very intuitive, and as a part of our further work we plan to take
this into account when performing the aggregation by putting different weights
of the base feature rankings related to dataset size and ranking quality.

Another important aspect of the error curve is its variability. One general
pattern which can be noticed is that when aggregation of the feature rankings is
performed (multiple ranking algorithms or multiple studies), the curve is much
less variable than the curves of the base feature rankings. Although the variability
does not directly represent feature ranking stability as described in [7] and [8],
we believe that it is indicative of it.

In our further work we plan to go beyond the visual inspection of the error
curves. The first step would be to use the ”area under the error curve” as a
numerical way of assessing the quality of the curves. Also, we plan to include a
correlation based indicator of stability of the feature rankings, which combined
with the area under the curve would provide an insight into the overall quality
of the feature ranking.
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Abstract. We report on development of an algorithm that can infer re-
lations between the chemical structure and biochemical pathways from
mutant-based growth fitness characterizations of small molecules. Iden-
tification of such relations is very important in drug discovery and devel-
opment from the perspective of argument-based selection of candidate
molecules in target-specific screenings, and early exclusion of substances
with highly probable undesired side-effects. The algorithm uses a com-
bination of unsupervised and supervised machine learning techniques,
and besides experimental fitness data uses knowledge on gene subgroups
(pathways), structural descriptions of chemicals, and MeSH term-based
chemical and pharmacological annotations. We demonstrate the utility
of the proposed approach in the analysis of a genome-wide S. cerevisiae
chemogenomics assay by Hillenmeyer et al. (Science, 2008).

1 Introduction

One of the promises of the post-genomics era was the identification of novel drug
targets and design of more efficient and specific drugs with fewer side-effects. In
reality, pipelines of pharmaceutical companies did not improve much due to
genomic data alone. One of the main reasons for that is the lack of methods
to combine characteristics of potential drug molecules with rich genomic data.
Such data comes in many flavors: from raw genome sequence data, phenotypic
profiles such as gene expression profiles, functional and physical interactions of
genes and proteins, to rich annotations of genes and their products by complex
ontologies. These together define phenomes (i.e., genome-wide phenotypes) of a
cell or an organism.

Of special interest for the identification and characterization of potential
drug molecules are recently developed chemogenomic approaches. These profiles
allow to measure changes in the phenome that were caused by the molecule’s
activity. When applied to a collection of mutants, we gain a data set with a vast
potential for the generation of chemogenomics hypotheses. One such data set
was recently reported by Hillenmeyer et al. [1], where growth fitness in the pres-
ence of a number of chemicals was observed in a set of genome-wide single-gene
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deletion mutants. The authors used yeast S. cerevisiae as a model organism, and
reported that a surprisingly large proportion (97%) of gene deletions exhibited
a measurable growth phenotype.

The aim of the research reported here was to see if the data set published
by Hillenmeyer et al. [1] could be used further to relate genetic pathways with
structural and pharmacological properties of drugs. We extended the information
from fitness data by associating chemicals with their structural descriptions, and
mined subsets of mutants that stem from single-deletions of genes common to
a specific pathway. Our effort, in which we queried a number of data bases
to complement experimental results and to allow for further analysis, could be
enlisted under integrative bioinformatics or integrative systems biology. These
emerging fields strive to relate a plethora of existing molecular biology data
bases and experimental repositories [2].

To serve our aim, we developed a specific data mining approach. In particular,
we used a combination of unsupervised learning (clustering) to find groups of
chemicals with similar mutant-based fitness profiles, and supervised learning to
check if discovered groups of chemicals can be characterized in terms of common
chemical structure. The proposed search algorithm evaluates such hypotheses
across a number of genetic pathways and tests a variety of plausible subgroups
of chemicals. While the particular approach is new and for the first described in
this report, it in part resembles rule-based subgroup discovery techniques [3, 4]
and bi-clustering approaches [5]. From the former, we borrow the idea of finding
subsets of characteristic data items, and from the latter the idea that items have
to be similar in two different aspects, in our case, in structure of the chemicals
and corresponding phenotype response.

The paper proceeds with the description of the data set used in our experi-
ments, and of preprocessing (data selection) steps. We continue with a detailed
description of the algorithm, experimental results and a discussion.

2 Data

In early 2008, Hillenmeyer et al. published a comprehensive analysis that in-
cluded 1144 chemical genomic assays on the yeast whole-genome heterozygous
and homozygous gene deletion collections and quantified the growth fitness of
each deletion strain in the presence of chemical or environmental stress con-
ditions [1]. This study generated the first available data set based on which
systematic analysis of functional relations between biochemical pathways and
chemical structure is possible.

In the analysis reported here we focussed on experiments on homozygous
strains. From the initial set of 418 genome-wide screens, we removed experi-
ments with environmental stress, irradiated drugs, inorganic compounds, plat-
inum compounds, norcantharidin, cantharidin analog and cantharidin disodium,
with the aim to focus on the chemical space of organic substances. We also dis-
carded assays for which the molecular formula was unavailable according to the
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supplementary data [1], assays that used mixtures of two chemicals and experi-
ments where time of growth was different than 20 generations.

From the remaining 136 assays, the filtering of assays with the same small
molecule at different concentrations was based on manual inspection of graphs of
quantile functions of fitness values (Figure 1). From such sets of experiments, we
selected the one with the sharpers transition in the related graph. In almost all
cases the lowest concentration was selected. If two assays used the same chemical
at the same concentration, only the first assay listed in the data was used. The
resulting set included 74 assays.
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Fig. 1. Quantile function of mutant growth fitness for wiskostatin is shown. Here, the
experiment concentration of 19µM was selected due to sharper quantile function.

We used NCBI’s PubChem (http://pubchem.ncbi.nlm.nih.gov/) to ob-
tain SMILES structural descriptors [6]. We failed to do so for three chemicals in
the collection, and thus proceeded with 71 chemicals and their related assays.
SMILES descriptors were converted to an array of molecular descriptions (consti-
tutional and topological descriptors, molecular properties, connectivity indices,
atom-centred fragments, functional group counts) using the Dragon [7] software.
We removed constant, near-constant, and highly correlated (correlation exceeded
0.9) descriptors and drug-like indices (like Ghose-Viswanadhan-Wendoloski in-
dex). For the analysis, we used 126 molecular descriptors.

The resulting 71 assays, each corresponding to an application of a specific
small molecule, included growth fitness measurement of 4262 single-mutants.
Of these, we have removed 507 mutants with missing growth fitness values.
The above preprocessing thus produced a data matrix that included the growth
fitness scores for 3755 single gene deletion mutants in the presence of 71 different
assays.
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3 Methods

We will assume that our data is a random sample e1 = (X1, Y1), . . . , en =
(Xn, Yn), (n = 71) where each pair ei = (Xi, Yi) represents a chemogenomical
experiment. Each experiment consists of two vectors: Xi is a set of DRAGON-
based structural descriptors of the i-th chemical used in the assay, and Yi is a
resulting vector of phenotype responses, consisting of growth fitness scores for
3755 single gene deletion budding yeast mutant.

We here propose a method that aims to relate chemical structures of the small
molecules involved in experiments with their characteristic phenotypic profile.
In particular, we are looking for subgroups of experiments (chemicals) where:

– experiments in the subgroup have similar phenotypic profile in some specific
subsets of mutants,

– the set of chemicals in the subgroup can be reliably discriminated from other
chemicals in the data set using DRAGON-based structural descriptions.

The subsets of mutants were identified based on the annotation of a gene to
a specific KEGG pathway [8]. We have only used pathways that include more
than two mutated genes. As of April 2009, there were 98 such pathways, covering
760 genes in total.

We have applied a specific search algorithm that uses unsupervised learning
to find subgroups of chemicals with similar gene set-based phenotypic profile,
and supervised learning to identify those subgroups which can be successfully
characterized by the set of chemical structure descriptors. The final step of the
analysis is a MeSH term enrichment-based characterization of resulting subsets
of chemicals. Both steps, the search algorithm and chemical characterization of
the subsets are described below.

3.1 Search Algorithm

The algorithm searches for characterizable sets of chemicals that resulted in
similar phenotypic profiles for a subset of mutants. The algorithm is executed
all gene sets (one KEGG pathway represents one gene set), and includes the
following steps:

1. Choose a subset of phenotypic features (genes from a specific KEGG path-
way) GS and define the dissimilarity measure δGS between two experiments
ei, ej (phenotypic profiles) using a weighted Manhattan metric:

δGS(ei, ej) =
∑

k∈GS

|Yik − Yjk|
maxl Ylk −minl Ylk

(1)

where Yik represents k–th component of random vector Yi.
2. Perform hierarchical clustering [9] of the experiments with δGS using Ward’s

minimum-variance linkage [10].
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3. Traverse the resulting dendrogram to identify various candidates for sub-
groups. Consider only subgroups consisting of at least minsize = 4 chemicals
and no bigger than maxsize = 10.

4. For all subgroups (of chemicals) identified in the previous step, estimate the
degree of separability from the rest of the chemicals in the data set. For
each subgroup, we first classify chemicals based on their membership in the
subgroup. We then perform leave-one-out to estimate the accuracy of sup-
port vector machine (SVM)-based class-prediction. SVM is presented with
DRAGON-based chemical structure descriptors and the classification in the
current subgroup. Area under ROC (AUC) is used to measure the predic-
tive accuracy. SVM with linear kernel as implemented in SVMlight library
(Linear Learner with default parameters) [11] was used in our experiments.
Subgroups with AUC equal to 0.75 or above are retained and reported to
the user.

3.2 Characterization of Subgroups

The discovered subgroups include a set of chemicals which share a similar phe-
notype response in a KEGG pathway-specific subset of mutated genes. Each
reported subset of mutated genes is therefore characterized by the name of their
respective KEGG pathway. We also need a simple, readable characterization of
chemicals in the subgroup. For this, we have used terms from the chemical clas-
sification and pharmacological classification part of Medical Subject Headings
(MeSH) ontology. Annotations of chemicals with MeSH terms were retrieved
from NCBI’s PubChem (http://pubchem.ncbi.nlm.nih.gov/). We then used
enrichment analysis to find terms characteristic for a given subset of chemicals.
Given all chemicals annotated to term t and chemicals in subgroup G we test
if there exists a relationship between membership of the subgroup G and term
t using Fisher’s exact test. The p–values from Fisher’s test are then used for
ranking annotated terms. We report terms with the associated p–value less than
0.05.

3.3 Implementation

The proposed method was developed in Python within the Orange data min-
ing framework [12], which implements unsupervised and supervised techniques,
leave-one-out evaluation and ROC analysis. Orange Bioinformatics toolbox [13]
was used to access KEGG pathways, obtain MeSH terms and chemical annota-
tions, and perform enrichment analysis of MeSH terms.

4 Results

Our algorithm discovered 25 subgroups. Eleven of them resulted in at least one
enriched classification term (pharmacological or chemical), eight of them (for
which all terms were annotated to at least 2 small molecules) are presented in
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Table 1. They include 40 small molecules (56.5% of the experiments). The highest
AUC score was 0.876 for a subgroup not shown in the Table (no associated
enriched terms).

Table 1. A selection of subgroups (chemicals and their associated phentoypic profiles)
as discovered by the proposed algorithm. Reported are the number of small molecules
in a subgroup, AUC scores, associated KEGG pathway, and enriched chemical and
pharmacological MeSH terms.

size AUC pathway chemical classification pharmacological classification

5 0.855 nitrogen metabolism sulfur compounds myeloablative agonists

toxic actions

5 0.855 ubiquinone biosynthesis hydrocarbons, halogenated, antineoplastic agents

nitrogen mustard compounds alkylating

7 0.819 biosynthesis of steroids disulfides none

5 0.782 drug metabolism

other enzymes urea none

5 0.779 alanine and aspartate

metabolism disulfides none

6 0.756 cell cycle - yeast disulfides, allyl compounds protective,

anticarcinogenic agents

6 0.756 folate biosynthesis azirines, sulfur compounds antineoplastic,

alkylating agents

8 0.752 one carbon pool allyl compounds protective, antineoplastic,

by folate anticarcinogenic agents

5 Discussion

The algorithm presented in this paper enables inference relations between chem-
ical structure and biochemical pathways. Identification of such relations is very
important for drug discovery, since it allows for an argument-based selection
of candidate molecules in target-specific screenings, and early exclusion of sub-
stances with highly probable undesired side-effects.

The experimental analysis we report in the paper uses the first, and currently
the only publicly available data set that observes chemically-induced phenotypes
in a genome-wide set of single-gene mutations. With availability of single-mutant
collections for a range of model organisms, and promises of corresponding RNA-
interference platforms that could also be applied for genome-wide phenotype
screening of human samples, we expect the emergence of similar data sets in
the near future. The presented computational approach should therefore not be
regarded as a single-application attempt, but rather as an enabling technology
that could help us in data analysis and hypothesis formation from the soon-to-
emerge experimental data.

The comprehensive evaluation of the results in the Table 1 is beyond the
scope of this paper. An ultimate test would require a number of wet-lab exper-
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iments to either confirm or discard the proposed hypotheses. We have, though
at the scanning stage, found some of the proposed hypotheses very interesting.
One of the identified subgroups, consisting of six molecules (Figure 2), is related
to the cellular process “cell cycle”. Disturbances in cell cycle regulation are the
hallmark of cancer. Enrichment analysis of the chemicals revealed that the sub-
group contains both anticarcinogenic agents from the data set, parthenolide and
amsacrine. Moreover, the most characteristic phenotypic marker by which the
six substances were clustered together was the relative growth fitness of mutants
in three genes (LTE1, DBF2 and CDH1), which are all involved in mitotic exit.
Parthenolide, the more thoroughly studied of the two identified anticarcinogenic
substances, is indeed thought to affect this phase of the cell cycle [14]. This
example thus illustrates the biological relevance of the proposed method and
illustrates usefulness of such methods. For example, identification of anticar-
cinogenic activity of parthenolide was identified in an experimental screen [15]
of the type which is notoriously error-prone. The method presented here demon-
strates that such computational analysis prior to experimental screens could
importantly increase the likelihood of a positive outcome of the screens.

Fig. 2. Subgroup of six small molecules having similar impact on cell cycle genes. Their
enriched chemical terms are disulfides and allyl compounds (p = 0.0048), their enriched
pharmacological terms are anticarcinogenic agents (p = 0.0055) and protective agents
(p = 0.0161).

6 Conclusions

This report presents the first attempt to analyze chemogenomic data by relating
chemical structures to biochemical pathways. An example is given to demon-
strate the biological relevance of the proposed method. It should be noted, how-
ever, that for the full extent of the usefulness of the proposed method, more com-
prehensive data sets are required. As a lesson from the study, screens uniformly
covering the chemical space in the selection of tested molecules are likely to pro-
vide the best predictive power. Further impact of the combined experimental
and computational methods described here for drug discovery and development
will be achieved when technical limitations for conducting genome-wide screens
in mammalian cells will be overcome; importantly, the method presented here for
yeast data is, with only slight modifications, useful also for mammalian systems.
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Introduction: Biomarker discovery is an important topic in biomedical applications
of computational biology, including applications such as gene and SNP selection from
high dimensional data. Surprisingly, the stability with respect to sampling variation or
robustness of such selection processes has received attention only recently. However,
robustness of biomarkers is an important issue, as it may greatly influence subsequent
biological validations. In addition, a more robust set of markers may strengthen the
confidence of an expert in the results of a selection method.

Methodology: Our first contribution is a general framework for the analysis of
the robustness of a biomarker selection algorithm. Secondly, we conducted a large
scale analysis of the recently introduced concept of ensemble feature selection, where
multiple feature selections are combined in order to increase the robustness of the
final set of selected features. We focus on selection methods that are embedded in
the estimation of support vector machines (SVMs). SVMs are powerful classification
models that have shown state-of-the-art performance on several diagnosis and prognosis
tasks on biological data. Their feature selection extensions also offered good results for
gene selection tasks.

Results: We show that the robustness of SVMs for biomarker discovery can be sub-
stantially increased by using ensemble feature selection techniques, while keeping the
same classification performances. The proposed methodology is evaluated on four mi-
croarray data sets showing increases of up to 27% in robustness of the selected biomark-
ers. The stability gain obtained with ensemble methods is particularly noticeable for
small signature sizes (a few tens of genes), which is most relevant for the design of a
diagnosis or prognosis model from a gene signature.

Keywords: Feature selection, Support Vector Machines, Biomarker discovery
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Introduction: In this abstract we describe Java-ML [1]. Java-ML is a collection of
machine learning algorithms, which aims to be a readily usable and extensible API
for both software developers and research scientists . Several well-known data mining
libraries already exist, including Weka and Yale/RapidMiner. In contrast to these tools,
Java-ML is oriented towards users who write their own programs. To this end, the
interfaces are restricted to the essentials, and are easy to understand.

Description: Java-ML contains an extensive set of similarity-based techniques, and
offers state-of-the-art feature selection techniques. The large number of similarity func-
tions allows for a broad set of clustering and instance-based learning techniques. The
feature selection techniques are well-suited to deal with high-dimensional domains of-
ten encountered in bioinformatics. Using Java-ML in your own software is easy. For
example, the following lines of code integrate K-Means clustering into your code.

Dataset data = FileHandler.loadDataset(new File("iris.data"), 4, ",");

Clusterer km = new KMeans();

Dataset[ ] clusters=km.cluster(data);

The first line loads data from the iris.data file, which has the class label in the
fourth column, and the fields are separated by a comma. The second line con-
structs a new instance of the KMeans clustering algorithm with default values,
in this case k=4. In the third line data is clustered and the clusters are returned.
There are several sources of documentation for Java-ML: the source code itself
is documented, the website provides a number of tutorials with annotated code
samples for common tasks and, finally, the website also has the API documen-
tation of all releases.

Conclusion: In this abstract, we described Java-ML, a library of machine learn-
ing algorithms, available from http://java-ml.sf.net/ under the GNU GPL
license.

Keywords: machine learning, library, feature selection, instance based learning,
clustering
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In this ongoing work, partial information about WNT-signaling pathway
found in KEGG has been used as prior knowledge to guide a machine learn-
ing algorithm, based on linear regression, to show a better understanding of how
cellular system works in WNT-signaling pathway. This work is based on a pub-
lished paper by [1]. We are using a set of graphical models called dependency
networks to give a bigger picture of how genes in different components in the
pathway affect each other. The ultimate goal is to understand which genes in one
component cause which in other components. The heuristic search used in this
study is guided by the prior knowledge extracted from WNT-signaling pathway.
In this work we have used AIC score function that balance between adding par-
ents to the regression model and the trade-off between bias and variance. Beside
AIC score function, for each family in the network, the set of parents are exam-
ined by Residual Sum of Squares (RSS). Since if a set of parents in the regression
model leads RSS to be zero, this means that AIC will go to infinite value, which
in turn gives nonsense result. Therefore, the model from the greedy search that
has been used is further examined to see if RSS is non-zero. If RSS equals to
zero the correlation coefficient is used to drop parents with small correlation
with the child gene .We would emphasize that the resultant network basically
looks at which genes from one component causes or react with which in another
component. In the future work we will examine the overfitting problem based on
cross-validation. After obtaining satisfied result, we will look at the interaction
between genes inside each component.

Keywords: WNT-signaling pathway,dependency Networks, heuristic search, cor-
relation coefficient
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The relative scarcity of the results of genetic association studies (GAS)
prompted many research directions and hypotheses. Genome-wide association
studies (GWAS) had appeared, now followed by whole-genome sequencing and
deep sequencing. Based on the complex data the multiple testing problem com-
puter intensive statistical methods became widespread. Despite the proven re-
peatability and transferability of GWAS results, it is a widely shared belief that
the efects of the variations in the human genome, particularly significant for
personalized diagnosis are still largely unexplored. The “rare haplotypes” hy-
pothesis exploiting the new generation sequencing techniques targets new vari-
ants, whereas the “common disease common variants” hypothesis focuses on the
probabilistic interaction and causal relation of many weak factors including en-
vironmental efects. We attempt to discover from subsequent measurements of
well-selected blocks of single-nucleotide polymorphisms (SNPs) the relevant ge-
netic factors for a given target set, which keeps only the promising variables.
It uses interim analysis and meta-analysis of the available aggregated data sets
for guiding further measurements. We apply complex Bayesian network based
structural features in the analysis, specifically Markov Blanket Memberships
(MBM), Markov Blanket Sets (MBS), and Markov Blanket Graphs (MBGs)
[1]. The applied Bayesian multilevel relevance analysis means a multivariate ap-
proach to discover relevant sets of variables together with their interactions, in
correspondence we work with multivariate preferences (utilities). We evaluate
typical policies in association studies based on interim Bayesian meta-analysis,
and also the performance of a one-step look ahead approximation of the expected
value of experiments in the full Bayesian approach. Our application domain is
the investigation of genetic background of asthma.

Keywords: adaptive study design, bayesian decision support, bayesian net-
works
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Probabilistic graphical models are widely applied tools in expression data
analysis, in pedigree analysis, in linkage and association analysis (e.g., see [4,
2]). We proposed the use of Bayesian networks in partial genetic association
studies as a tool, which can learn non-transitive, multivariate, non-linear re-
lations between target and explanatory variables, treat multiple targets, and
allow scalable multivariate analysis [1]. To cope with high sample complexity
we used the Bayesian statistical framework, which allows model-averaging as an
automated solution for the multiple testing problem and marginalization to the
relevant aspects of the model. However the applicability of graphical models in
genome-wide association studies is hindered by the high sample size and com-
putational complexity. We present results about the learning characteristics of
their Bayesian application, and overview the computational complexity to in-
dicate the achievable gains of parallelization [3]. Specifically, we examine the
following.

1. How the sample size affects the posterior of specific feature values (especially
regarding the Markov-blanket membership feature).

2. Can an internal score be defined (e.g. the entropy of the posterior) to char-
acterize the applicability of a high-dimensional, multivariate analysis.

3. How sample size affects performance using an external, reference from the
point of view of feature subset selection FSS using sensitivity and specificity,
misclassification rate and AUC (cf. the multiple testing problem).
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The relative accuracy and symbolic nature of the genotype data hide the
complexity of preprocessing such as image processing and clustering. Whereas
in expression data analysis noise models are common to cope with similar nor-
malization and feature extraction problems, such models are missing in genetic
association studies (GAS). We present a probabilistic approach to model uncer-
tainties in genotyping with explicit representation of rejection and a probabilis-
tic averaging framework to cope with such uncertain data. Beside measurement
problems, uncertainty also arise in haplotype reconstruction and we present a
two-phased Monte Carlo integration of PHASE, an existing haplotype recon-
struction method [2] and our earlier Bayesian model-based data analysis [1].
The implemented framework allows the explicit propagation of uncertainty from
measurement through haplotype reconstruction to data analysis allowing better
understanding of the sufficiency of the measurements.

Keywords: genotyping error,haplotype reconstruction, uncertain data, bayesian
feature subset analysis, bayesian networks
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Modern high-throughput molecular techniques deliver data sets which allow
large-scale gene expression analysis and to gain insight into the complex archi-
tecture of biological networks. Various reverse engineering methods have been
tested so far to deal with the challenge of inferring gene regulatory interactions
from these data sets. One main problem is the increasing complexity of defining
and calculating detailed parameters and hence computation time. To bypass this
issue, we propose a model to infer genetic regulations from gene expression data
which uses a discretization to Boolean states to deal with the high complexity of
the data. Another assumption of the approach is the use of the sigmoid function,
which models dependencies between genes. This is integrated into a probabilis-
tic framework, using a Bayesian approach to infer a network topology from the
Boolean gene states. To prevent the algorithm from overfitting noisy data in
its prediction, an additional prior is added to regularize the result. The prior
is defined in a way that it favors scale-free networks. Prediction accuracy was
evaluated on several simulated data sets as well as on a small biological network,
the Saccharomyces cerevisiae cell cycle. Additionally, testing was performed on a
larger set of 800 cell cycle regulated genes, to test if basic properties of biological
networks could be inferred by the algorithm from given gene concentrations. In
effect, the algorithm was able to reconstruct from simulated as well as biological
data sets main regulatory dependencies of the original topology. It furthermore
has a low time complexity and is applicable even to large simulated networks
with more than 4000 nodes. Difficulties arise for small networks, where the in-
tegrated prior has only little influence and only few measurements are available
to describe the interactions. Further tests on a larger set of 800 cell cycle reg-
ulated genes revealed that the algorithm can also infer scale-free topologies for
large networks, with typical properties of biological networks like robustness or
average shortest path lengths.

? Both authors contributed equally.
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Starting from a known gene regulatory network involved in the switch prolif-
eration/differentiation in keratinocytes cells, we have developed a new approach
to learn rules that can explain the presence or absence of regulation between two
genes. For this purpose, we have used experimental data (gene expression) as well
as knowledge such as GO annotations and positions of genes on chromosomes.
In the context of statistical relational learning, we have learned the concept of
transcriptional regulation between two genes, represented by a predicate ”regu-
late” [1], [2], [3]. A network of genes extracted from Ingenuity has been used for
labeling couples of genes, and experimental data as well as prior knowledge have
been encoded into a first order representation (ground atoms and rules) [2]. We
have first applied a pure inductive logic programming approach, Aleph[4] and we
have compared it to a statistical relational learning approach [5], called Markov
Logic Network, introduced by Domingos et al.[7, 6] In this framework, a set of
weighted logical rules is represented by a random Markov network: nodes corre-
spond to ground atoms, rules allow to form cliques, and the weights of the rules
are associated to the corresponding cliques. Making a decision corresponds to
computing the posterior probability of the labels given the input description. We
have used Aleph to produce a large set of rules, thus fixing the structure of the
random Markov network, and we have applied a discriminative learning method
to get the weights associated to the rules implemented by Alchemy, a source
code implemented and described in [8]. Among the rules ranked by Alchemy,
we have found interesting regulatory patterns which show that first, Ingenuity
can be cross-validated by experimental data and provide consistent information
and second, new rules can be used to suggest new candidates for regulators and
regulees. However, in terms of performance, Alchemy only marginally improves
performance upon Aleph. Results are discussed and compared to those obtained
by [9] on other relational tasks.

Keywords: biological network inference, statistical relational learning, gene
regulatory network, gene expression
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A phylogenetic tree is a tree that graphically illustrates the evolutionary rela-
tionships among various species. These relationships can be inferred by analysing
molecular data, such as nucleotide and amino-acid sequences. Distance matrix
methods, such as Neighbor Joining (NJ) [1], are among the most popular phylo-
genetic tree methods. They first compute a dissimilarity measure between each
pair of sequences, and then use the resulting matrix to infer a phylogenetic tree.

We propose a novel distance matrix method for reconstruction of phyloge-
netic trees based on a conceptual clustering method that extends the well-known
decision tree learning approach [2]. Basically, our method starts from a single
cluster and repeatedly divides it into subclusters until all sequences form a dif-
ferent cluster. Normally, there are 2N ways to split a set of N sequences into two
subsets. But if we assume that the split can be described by referring to a par-
ticular polymorphic location, then the number of splits is linear in the length of
the sequences, and constant in the size of the set, making such a divisive method
computationally feasible. A similar observation was made by [3], who were the
first to propose a top-down clustering method for phylogenetic tree construction.

To partition a cluster into two subclusters, our method uses a criterion that
is close to the optimisation criterion that NJ uses, namely, constructing a phylo-
genetic tree with minimal total branch length. Our algorithm is implemented as
a variant of the Clus decision tree learner3; we call the resulting system Clus-ϕ.

We have tested Clus-ϕ on a number of synthetic datasets. The results were
compared to those from NJ in terms of similarity with the true tree and compu-
tational cost. The results showed that our method scales much better in terms of
the number of sequences, and remains feasible for sets of thousands of sequences,
where other methods fail. Its performance is close to that of the NJ method.

Keywords: Phylogenetic trees, Bioinformatics, Decision Trees, Conceptual clus-
tering, Top-Down phylogenetic tree
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Background: One key issue when analyzing microarray data is to choose
(pre)treatments methods among the plethora developed. Several benchmarking
methods aim to help to combine the best-suited among the millions combina-
tions possible. These benchmarks dramatically suffer from artificial variance, far
from biological relevance as they use either spike-in data or simulations. We
propose a new benchmarking method avoiding those biases, by using actual bio-
logical data. We aim to take into account the actual biological variability of the
data, therefore allowing finer analysis of the behavior of the statistical methods
compared.

Method: We selected 34 datasets from the GEO database on the HG-U133a
platform, with at least 15 replicates in each condition. Each of those datasets
was pretreated with the R package GCRMA and then merged into one giant
matrix (1.292.414 rows - probesets and 2*15 columns - replicates) called the DB
matrix. A metric we call D/S has been computed for each row (equation 1).
Then, using statistical formulae to determine a given sensitivity and positive
predicting power, we computed a D/S threshold for several combinations of the
number of replicates, Positive Predictive Value, and sensitivity (equation 2).

D

S
=

|µ1 − µ2|
mean(S1, S2)

(1)

D

Sth
=
√

2 · |Z1−α + Z1−β |√
n

(2)

Using this set of D/S thresholds, we resampled randomly subsets matrices: 200
rows above the threshold are the true positives (TP) and 19.800 rows below
the threshold are the true negatives (TN). Volcano plots, MAplot and plots of
variance versus average are similar to experimental microarray data. The subsets
matrices, for which the truth is defined, were then analyzed using the R package
PEGASE. We computed the p-values for this set of methods: Student t test
and Welch t test (classic), Regularized t test, SAM and LIMMA (most cited),
Shrinkage t test (recent) and finally Window [Welch] t test developed in our lab.
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Results: The comparison of the methods shows a clear superiority of the meth-
ods using shrinkage of the variance estimation (Regularized t test, Shrinkage
t test and Window t tests). These results confirm other benchmarks, but no-
table differences are observed at low number of replicates. The advantage of our
method lies in the fact that virtually all the parameters of the analysis can be
fine-tuned, allowing searcher to assess what methods are really suited for their
particular cases.

Keywords: Microarray, Benchmarking, Biological variance
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The overall aim of systems biology is to bring a novel perspective into under-
standing of complex interactions in biological systems. We present a top down
approach for modeling of transcriptomics data through information fusion and
creative knowledge discovery. By using onotology information as background
knowledge for semantic subgroup discovery, rules are constructed that allow
recognition of gene groups that are differentially expressed in different types of
tissues. This information is further linked with the Biomine engine to visualize
gene groups and uncover potential unexpected characteristics of the observed
system. In Biomine, data from several publicly available databases were merged
into a large graph and a method for link discovery between entities in queries was
developed. Obtained models can thus serve as generators of research hypothesis
that can be further on experimentally validated. Results of two case studies are
presented to illustrate the applicability of the approach.

Keywords: transcriptomics, microarrays, creative knowledge discovery
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Phenotype Prediction from Genotype Data
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Abstract. The prediction of quantitative phenotypes from genome-wide
SNP data has only started to be explored as a tool for functional ge-
nomics. Lee et al. (2008) derived a Markov-chain model of complex traits
in heterogeneous stock mice (http://gscan.well.ox.ac.uk/) from whole
genotypic information. In this study we present the first example of a
predictive pipeline based on Support Vector Regression and challenge
Lee’s results on the same GSCAN data. Comparable or better accura-
cies are found on two quantitative phenotypes, 12112 SNPs and about
1500 samples. A comparison with candidate loci previously identified by
standard association studies also shows good agreement. Further regu-
larization methods have been implemented, based on the näıve elastic
net (Zhou and Hastie 2005, De Mol et al 2009), with prediction accuracy
comparable to both SVR and the Markov-chain methods.

Keywords: GWAS, Support Vector Regression, functional genomics

In this work we propose a machine learning regression approach for genome-
to-phenotype prediction to support the use of quantitative phenotypes as target
variables in functional genomics.

Quantitative phenotypes emerge everywhere in systems biology and biomedici-
ne. They are of special interest in complex common diseases in which high in-
dividual variability makes difficult or impossible to separate cases into distinct
categories. Fitting quantitative phenotypes from genome-wide data was only
recently considered [1]. It is indicated as a promising tool when a pathophysi-
ologic state depends on multiple genetic alterations, and especially in studying
gene-environment interaction, where the effect of risk factors can be modified by
environmental exposure on a multiplicity of genes [2].

While most of the machine learning studies on molecular data are focus-
ing on classification, here we explore the use of different regularization methods
in the prediction of quantitative phenotypes. We have implemented a complete
pipeline, also available for high performance computing facilities, that can be
applied on high-density genotype data. We present examples of prediction of
quantitative phenotypes on a genome-wide dataset of 12K SNPs, comparing
to Reversible Jump Monte Carlo Markov Chain (MCMC) [1]. We considered
first a standard Support Vector Regression (SVR) algorithm and then the L1L2
Regression [3]. For the former, we used ε-SVR in the LIBSVM implementation
(http://www.csie.ntu.edu.tw/∼cjlin/libsvm),with features ranked accord-
ing to their regression weights. The L1L2 regression [3] is a regularization method

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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that finds the optimal weight vector of a linear regression while maintaining a
high sparsity of the solution. It is an evolution of the elastic net model [4] that
includes Regularized Least Squares (RLS) regression to recursively optimize the
feature weights. We have implemented a computationally efficient Python ver-
sion of the L1L2, based on the numpy package. The L1L2 regression is used as
machine learning core within an experimental pipeline implemented by func-
tions of the mlpy package (https://mlpy.fbk.eu). A modular version of the
software, implemented for use with parallel computing facilities, managed up to
550k features and a few thousands of samples.

Prediction was tested on the same data used in [1] and described in [5].
They include familiar, genotype and phenotype information from a population
of heterogeneous stock mice. The phenotypes to predict from 12112 SNPs were
the percentage of CD8+ cells and the mean cell haemoglobin (MCH). A Data
Analysis Protocol replicating [1] (15 × 50%-training/test splits) and a text-
book 15-CV were used for SVR and L1L2 respectively, with the squared cor-
relation coefficient as error function. Results by SVR and L1L2 vs reference
are listed in table, with similar or improved performance. Further, SNPs se-
lected by SVR and L1L2 are consistent with GWAS [5]: see figure for CD8+.

Method CD8+ MCH
SVR 0.306 0.147
L1L2 0.281 0.114
MCMC 0.314 0.111
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This poster presents a novel feature selection method for classification of high
dimensional data, such as those produced by microarrays. Classification of such
data is challenging, as it typically relies on a few tens of samples but several
thousand dimensions (genes). The number of microarray chips needed to obtain
robust models is generally orders of magnitude higher than most datasets offer.
The number of available datasets is however continuously rising, for example in
databases like the NCBI’s Gene Expression Omnibus (GEO). Building a large
microarray dataset consisting of the simple juxtaposition of independent smaller
datasets is difficult or irrelevant due to differences either in terms of biological
topics, technical constraints or experimental protocols.

Biomarker selection specifically refers to the identification of a small set of
genes, a signature, related to a pathology or an observed treatment outcome.
The lack of robustness of biomarker selection has been outlined. In the context
of biomarker selection from microarray data, a high stability means that different
subsets of patients lead to very similar signatures and is a desirable property.
The biological process explaining the outcome is indeed assumed to be mostly
common among different patients.

Our feature selection technique includes a partial supervision (PS) to smoothly
favor the selection of some dimensions (genes) on a new target dataset to be
classified. The dimensions to be favored are previously selected with a simple
univariate technique, like a t-test, from similar source datasets, for example from
GEO, hence performing inductive transfer learning at the feature level. We rely
here on our recently proposed PS-l2-AROM method, a feature selection approach
embedded in a regularized linear model. This algorithm reduces to linear SVM
learning with iterative rescaling of the input features. The scaling factors depend
here on the selected dimensions on the source domains. The proposed optimiza-
tion procedure smoothly favors the pre-selected features but the finally selected
dimensions may depart from those to optimize the classification objective under
rescaled margin constraints.

Practical experiments on several microarray datasets illustrate that the pro-
posed approach not only increases classification performances, as usual with
sound transfer learning scheme, but also the stability of the selected dimensions
with respect to sampling variation. It is also shown that multiple transfer from
various source datasets can bring further improvements.
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Although microarray experiments have great potential to support progress
in biomedical research, results are not easy to interpret. Information about the
functions and relations of relevant genes needs to be extracted from the vast
biomedical literature. A potential solution is to use computerized text analysis
methods.

Automatic text mining, commonly based on term co-occurrence, has been
used to identify information valuable for interpreting microarray results. Here we
propose the use of semantic relations (or predications) automatically extracted
from the biomedical literature as a way of extending these techniques. Seman-
tic predications convert textual content into “executable knowledge” amenable
to further computation supporting research on genes and relevant diseases. In
addition, we suggest that the combination of microarray data and semantic
predications can profitably be exploited in the literature based discovery (LBD)
paradigm to further enhance the scientific process.

We describe a method and an application that integrates semantic relations
with microarray results and show its benefits in supporting enhanced access to
the relevant literature for interpretation of results and novel hypotheses genera-
tion.

Keywords: micro-array data analysis, literature-based discovery
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We present a Bayesian machine learning method for multivariate two-way
ANOVA-type analysis of high-dimensional, small sample- size metabolomic datasets.
In metabolomics and other high-throughput bioinformatics studies, the data
analysis task is typically differential analysis between diseased and healthy sam-
ples. This task is often further complicated by additional covariates, such as
gender, treatment groups, or measurement times, requiring a multi-way analy-
sis. The main complication is the combination of high dimensionality and low
sample size, which renders classical multivariate techniques useless. We intro-
duce a hierarchical model which does dimensionality reduction by assuming that
the metabolites come in similarly-behaving, correlated groups. The key assump-
tion is that metabolomics data has intrinsic correlations due to the existence
of biochemical networks. The ANOVA-type decomposition is done on the set
of reduced-dimensional latent variables, representing the correlated groups of
variables. The method thus finds common up/down-regulations of clusters of
metabolites, corresponding to subparts of metabolic pathways. The advantage
of using Bayesian machine learning methods here is that they are not prone
to overfitting and they inherently provide confidence intervals for the results.
This aspect is particularly important when the number of samples is low. We
apply the methods to study lipidomic profiles of a recent large-cohort human
diabetes study. The study contains time-series of healthy control patients and
patients that later progressed into type 1 diabetes, both including males and
females. The method finds statistically significant main and interaction effects
for relevant metabolite groups.

Keywords: ANOVA, factor analysis, hierarchical model, metabolomics, multi-
way analysis, small sample-size
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We investigate knowledge representation in systems biology. We find that
there is often an inconsistency between the semantics implied by the representa-
tion used to store the knowledge, and the way the knowledge is used in machine
learning. We focus on the open and closed-world assumptions and their use in
two important problem areas: predicting gene functional classes, and learning in
metabolic networks.

The problem of learning to predict the gene functional classes is technically
interesting in machine learning because of the hierarchical structure of the classes
imposes dependencies on the predictions, and because a gene may have more than
one function [1]. The bioinformatic data for this problem is typically represented
using OWL, which makes sense given its hierarchical structure. However, when
the data is pre-processed for machine learning, the open-world assumption of
OWL is replaced by a closed-world assumption: if an example is not labeled
as being in a class then it is a negative example. This is generally true, and it
enables induction to be much more efficient, but it also introduces errors into
the knowledge base.

A similar situation occurs with the interesting machine learning problems
associated with metabolic pathways. Again OWL is typically used in the bioin-
formatics databases. However, when learning metabolic models it is more biolog-
ically natural to assume a closed-world assumption: for example if you remove
the only gene encoding an enzyme that makes metabolite X then X will not be
present [2,3]. As in the functional genomics example, the closed-world assump-
tion introduces errors but has great utility for learning.

We conclude that it is important to make explicit any assumptions made
when storing or reasoning with systems biology knowledge.

Keywords: predicting gene function, metabolic networks
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Graphical models have drawn interest in many fields due to visualization
and interpretation capabilities for complex networks. In molecular biology for
instance, large-scale sparse graphs arise naturally in gene regulatory networks
(GRN). If nodes in the graph are considered as random variables and edges repre-
sent interactions, the theory of probability enables the analysis of the dependence
structure in the network. Gaussian graphical models [4] are an attractive choice,
in virtue of simple interpretation and well established statistical theory.

The present study explores and compares different methodologies to infer the
dependence structure for networks of p genes, based upon n ¡¡ p observations
(expression levels). In particular, we look into the class of regression-based ap-
proaches [6, 3, 7]. In the simplest case, the inference results in the independent
estimation of a regression model for each variable (gene) [6]. Sparse-inducing
estimators (such as LASSO), are used to enforce that few coefficients in the
estimated models are actually non-zero. In turn, as these coefficients are asso-
ciated to edges in the Gaussian graphical model, this amounts at imposing a
sparsity prior over the set of edges. However, the estimated structure might be
self-contradictory as symmetry of the interactions is not guaranteed. To over-
come this, recent work suggests to estimate a joint regression model [7]. Remark-
ably, joint estimation is somewhat closer to another class of structure-learning
methodologies based on convex optimization procedures [2, 1, 8].

Altogether these methods have shown to be promising especially for high-
dimensional problems whereas other approaches are not applicable. However,
just as any other penalized estimators, the mentioned procedures face the same
dilemma: the selection of regularization parameter(s). We thus investigate on
practical cases the different existing criteria to accomplish model selection. Even
though the chosen parameters are meaningful for the specific task, the estimated
structure is generally highly unstable as n ¡¡ p. Slight changes in the training
set might lead to significant changes in the estimated network. Therefore we
look into the problem of stabilizing the estimation process. A plausible way to
deal with this for GRN, is that of introducing a prior derived from additional
gene-gene information available in public repositories. Alternatively, networks
obtained from independent datasets can be combined to find a more consistent
structure. Simulations on both synthetic data and gene expression data for Sac-
charomyces cerevisiae are reported. The regulatory program for yeast organisms
is well documented and therefore, the outcome of the different algorithms can
be systematically validated.
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Background: Growing tumors are characterized by the presence of hypoxic
areas at their center due to the lack of oxygen. It is now accepted that hy-
poxia selects cancer cells able to metastasize. However, the genes involved in
this process remain largely unidentified. Lots of experiments using DNA mi-
croarrays have been published. However, lots of these datasets have not been
fully exploited. This work proposes a methodology for the meta-analysis of sev-
eral Affymetrix datasets.Applied to metastasis and/or hypoxia datasets, this
methodology identified genes already known to be involved in metastasis and/or
hypoxia as well as new ones.

Methods: 22 Affymetrix datasets about metastasis and/or hypoxia were down-
loaded from GEO and ArrayExpress. AffyProbeMiner’s CDFs were applied to
the CEL files. GCRMA was used for the pre-processing steps. The datasets were
processed with the Window Welch t test. Based on the results of these individual
analyses, two approaches were followed to select genes of interest. Another ap-
proach consisted to group several datasets into meta-datasets on which regular
analyses were run.

Results: A total of 183 genes were common to two approaches or more. Out
of these 183 genes, 99, such as JUNB, FOS and TP63, are already known to be
involved in cancer. Moreover, 39 genes of those, such as SERPINE1 and MMP7,
have been described in the literature to regulate metastasis. Twenty-one genes
among which VEGFA and ID2 have also been described to be involved in the
response to hypoxia. Lastly, DAVID classified those 183 genes in 24 pathways,
among which 8 are directly related to cancer while 5 others are related to pro-
liferation and cell motility. A negative control composed of 183 random genes
failed to provide such results. Interestingly, 6 pathways retrieved by DAVID with
the 183 genes of interest concern pathogen recognition and phagocytosis.

Keywords: Microarray,Meta-analysis, Metastasis, Hypoxia, Cancer
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The metabolic syndrome is a combination of medical disorders that increase
one’s risk for diabetes (type 2) or cardiovascular disease, such as atherosclero-
sis. Due to unhealthy way of living it affects a large number of people in the
developed countries. In some studies, the prevalence in the USA is calculated as
being up to 25% of the population.

The presence of a metabolic syndrome relates to particular changes in the
lipoprotein subclass profile, but the current clinical risk assessment methodol-
ogy cannot take this properly into account. The use of Proton Nuclear Magnetic
Resonance (1H NMR) spectroscopy seems to have significant potential in clinical
use since the technique enables fast measurement of the lipoprotein profile di-
rectly from a serum sample. Although many computational methods have been
developed to exploit these data for assessment of metabolic syndrome, a prob-
abilistic approach giving confidence value for each serum sample measured and
classified is rarely used.

The main purpose of this study was to implement the Fuzzy Artmap neural
network in ANSI C to classify 1H NMR serum spectra according to the health
state of individuals and to obtain the confidence value for each classified serum
sample.

The approach was evaluated on extensive simulated dataset of spectra that
represents five categories of health state of individuals depending on their lipopro-
tein subclass. Categories were: (i) healthy controls, (ii) metabolic pathway 1
(near healthy), (iii) metabolic pathway 2, (iv) metabolic pathway 3 (near metabolic
syndrome) and (v) metabolic syndrome. The dataset was built based on exper-
imental lipoprotein subclass information and comprised 2500 spectra; half of
them were used for training and the other half for independent evaluation. Vot-
ing strategy was applied to present training and evaluation data 50 times in
random order, giving a statistically representative output of classification with
a confidence value. The results showed that the proposed approach is capable of
correctly classifying 94% of the spectra. Moreover, from the confusion matrix it
is evident that confusion only occurred between adjacent categories (e.g., 7.3%
of healthy individuals were erroneously classified as belonging to the metabolic
pathway 1 category).



172

In line with other recent studies our method also confirmed that the use of 1H
NMR spectroscopy for metabolic syndrome and atherosclerosis risk assessment
is feasible, especially since our simulated spectra included realistic statistical
population variation in the lipoprotein subclass signals.

Our results show that the proposed approach can be used as an efficient tool
for automatic assessment of metabolic syndrome from 1H NMR serum spectra.
The Fuzzy Artmap neural network has shown its ability to classify samples with
a confidence value; this is an important issue regarding the potential use of 1H
NMR spectroscopy in disease risk assessment.

Keywords: Fuzzy Artmap,neural network, 1H NMR, metabolic syndrome spec-
troscopy, disease risk assessment
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Modeling phagocytosis - PHAGOSYS project
outline
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Current mathematical models of phagocytosis are mostly focusing on Rho
GTPases [3], [4] and on macrophage efficacy [5], [6]. A recent modeling paper by
Zerial et al. [7], suggested a ’cut-out-switch’ behavior of Rab5-Rab7 conversion.
However, none of these models address the question how pathogenic bacteria
alters phagosome maturation and what pathways are inhibited.

Antibiotics typically target the pathogen, rather than host-specific pathways.
In [1], kinase inhibitors have been developed that prevent intracellular growth
of S. Typhymurium and M. tuberculosis. Akt1 has been identfied as a master
regulator by controlling at least 2 essential host pathways - PAK4-RAC1/RHOA
and AS160-Rab14, which can be manipulated by various pathogens.

A recent study [2] by the same authors links Akt1 with Irgm1, a member
of the IFN-gamma regulated GTPase. This link is somewhat controversial as
activation of Irgm1 supports, but phosphorylated Akt1 inhibits the elimination
of pathogens through Rab14 activation. Like the Rab5-Rab7 switch, this could
be another modeling problem of a competition between Irgm1 and Rab14 GT-
Pases. In light of this example, we aim to construct mathematical models that
will address possible crosstalks based on the literature between GTPases and
manipulate them by mimicking the pathogen. One of our goals is to determine
which of the different reaction schemes proposed are consistent with the dynam-
ics of the solutions.
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Inductive process-based modeling [1] is an approach to automated learning of
models of dynamic systems from time-series data. The approach takes as input
modeling knowledge from the domain at hand and time course measurements of
the observed system. The knowledge is represented in terms of generic entities
and processes in the domain; in the domain of modeling the dynamics of bio-
logical (metabolic) networks, entities correspond to metabolites, while processes
denote biochemical reactions among metabolites that influence their concentra-
tions. The learned process-based model identifies the set of specific processes
among specific entities that govern the behavior of the observed system. When
simulated, the learned model should closely match the time course data provided
as input. Inductive process-based modeling has been successfully applied in the
domain of system biology to learn models of the dynamics of biological networks;
for an overview of these applications, see [3].

In this paper, we address the task of modeling endocytosis, more specifically
the maturation of endosomes, a type of membrane-bound intracellular compart-
ments. We use process-based modeling to replicate the results reported in [2],
where the focus is on explaining the GTPase mechanism that switches between
transporting and degrading cargo in endosomes. The switch is achieved through
the replacement of Rab5 domain proteins in early endosomes with Rab7 domain
proteins in mature ones. Two modeling alternatives for the mutual exclusiveness
of Rab5 and Rab7 are considered: toggle vs. cut-out switch. These are compared
in the context of 23 time series of Rab5 concentrations, measured by tracking
early endosomes in three different experiments. The comparison shows that the
model based on the cut-out switch is better supported by empirical evidence [2].

To apply the process-based modeling approach to the task of modeling the
dynamics of Rab5-to-Rab7 conversion in endocytosis, we first encoded a library
of domain-specific knowledge. The library includes definitions of generic entities
(proteins and concentrations thereof as entity properties) and generic processes.
The processes involved in the modeled GTPase mechanism include activating
and inhibitory interactions, processes of exchange and hydrolysis that shuffle
between inactive GDP-bound and active GTP-bound conformations of Rab5 and
Rab7 proteins, and definitions of hyperbolic (Michaelis-Menten) and sigmoidal
(Hill) kinetic laws for modeling individual interactions.
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The library of generic entities and generic processes, together with the time-
series data sets of the dynamic change of Rab5 concentration through time,
was taken as input to the HIPM tool [4] for inductive process-based modeling.
HIPM successfully reconstructed in an automated fashion the manually con-
structed Rab5-to- Rab7 conversion models [2], thus clearly demonstrating the
utility of our approach.

Keywords: inductive process modeling, endocytosis
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Bernard Ženko1, Jan Struyf2, and Sašo Džeroski1
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Under specific environmental conditions, co-regulated genes and/or genes
with similar functions tend to have similar temporal expression profiles. Iden-
tifying groups of genes with similar temporal profiles can therefore bring new
insight into understanding of gene regulation and function. The most common
way of discovering such groups of genes is with short time series clustering tech-
niques. Once we have the clusters, we can also try to describe them in terms of
some common characteristics of the comprising genes, e.g., (Ernst et al., 2005).
An alternative way are the so-called constrained clustering techniques; here only
clusters with valid descriptions are considered, and as a result, we obtain clusters
and their descriptions in one single step.

We present a novel constrained clustering method for short time series, which
uses the approach of predictive clustering. Predictive clustering (Blockeel et al.,
1998) combines clustering and predictive modeling; it partitions the instances
in a set of clusters like the regular clustering does, however, it also constructs
predictive model(s) that describes each of the clusters. So far, predictive models
can take the form of decision trees (Blockeel et al., 1998) or rules (Ženko et al.,
2005). Predictive clustering trees, together with a qualitative time series distance
measure (Todorovski et al., 2002), have already been used for clustering of short
time series (Džeroski et al., 2007). Here we present predictive clustering rules for
short time series, which use the same qualitative distance measure, but describe
clusters with decision rules instead of trees.

The advantage of rules over trees is that each rule describing a cluster can
be interpreted independently of other rules (clusters), while a tree describes all
the clusters simultaneously. In addition, within rules we can easily introduce an
additional constraint that rule conditions only comprise tests on the presence of
gene descriptors and not on their absence. Trees by their nature have to include
both types of tests (a set of instances is split into a cluster where the gene
descriptor is present, and another set where the descriptor is absent), even if
tests on absence are not biologically meaningful.
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We demonstrate the benefits of our method on a publicly available collection
of data sets (Gasch et al., 2000), which records the changes over time in the
expression levels of yeast genes in response to a change in several environmental
conditions. As the gene descriptors we use the Gene Ontology terms (Ashburner
et al., 2000). The results show that rules give rise to clusters of genes with similar
statistical properties (e.g., intra cluster variance and size) as trees, however, the
descriptions of the clusters are easier to interpret since they only include the
presences of gene descriptors.

Keywords: time series, predictive clustering, rule learning
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