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Preface

Molecular biology and all the biomedical sciences are undergoing a true rev-
olution as a result of the emergence and growing impact of a series of new
disciplines and tools sharing the ’-omics’ suffix in their name. These include in
particular genomics, transcriptomics, proteomics and metabolomics, devoted re-
spectively to the examination of the entire systems of genes, transcripts, proteins
and metabolites present in a given cell or tissue type. The availability of these
new, highly effective tools for biological exploration is dramatically changing the
way one performs research in at least two respects. First, the amount of available
experimental data is not a limiting factor any more; on the contrary, there is
a plethora of it. Given the research question, the challenge has shifted towards
identifying the relevant pieces of information and making sense out of it (a ’data
mining’ issue). Second, rather than focus on components in isolation, we can now
try to understand how biological systems behave as a result of the integration
and interaction between the individual components that one can now monitor
simultaneously, so called ’systems biology’.

Machine learning naturally appears as one of the main drivers of progress in
this context, where most of the targets of interest deal with complex structured
objects: sequences, 2D and 3D structures or interaction networks. At the same
time bioinformatics and systems biology have already induced significant new de-
velopments of general interest in machine learning, for example in the context of
learning with structured data, graph inference, semi- supervised learning, system
identification, and novel combinations of optimization and learning algorithms.

This book contains the scientific contributions presented at the Fourth In-
ternational Workshop on Machine Learning in Systems Biology (MLSB’2010),
held in Edinburgh from October 15 to 16, 2010. The workshop was organized
as a core event of the PASCAL2 Network of Excellence, under the IST pro-
gramme of European Union. The aim of the workshop was to contribute to the
cross-fertilization between the research in machine learning methods and their
applications to systems biology (i.e., complex biological and medical questions)
by bringing together method developers and experimentalists.

The technical program of the workshop consisted of invited lectures, oral
presentations and poster presentations. Invited lectures were given by Nir Fried-
man,Ursula Kummer, Hans Lehrach, Florence d’Alché-Buc, and Vebjorn Ljosa.
Sixteen oral presentations were given, for which extended abstracts are included
in this book: these were selected from 24 submissions, each reviewed by three
members of the scientific program committee. Twenty-five poster presentations
were given, for which abstracts of varying length are included here. We would
like to thank all the people contributing to the technical programme, the scien-
tific program committee, the local organizers and the sponsors for making the
workshop possible.

Edinburgh, October 2010 Sašo Džeroski, Simon Rogers and Guido Sanguinetti
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Ondřej Kuželka and Filip Železný
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Protein-protein network inference with
regularized output and input kernel methods

Florence d’Alché-Buc

Université d’Evry-Val d’Essonne, Evry, France

Abstract. Prediction of a physical interaction between two proteins has
been addressed in the context of supervised learning, unsupervised learn-
ing and more recently, semi-supervised learning using various sources of
information (genomic, phylogenetic, protein localization and function).
The problem can be seen as a kernel matrix completion task if one defines
a kernel that encodes similarity between proteins as nodes in a graph or
alternatively, as a binary supervised classification task where inputs are
pairs of proteins. In this talk, we first make a review of existing works
(matrix completion, SVM for pairs, metric learning, training set expan-
sion), identifying the relevant features of each approach. Then we define
the framework of output kernel regression (OKR) that uses the kernel
trick in the output feature space. After recalling the results obtained so
far with tree-based output kernel regression methods, we develop a new
family of methods based on Kernel Ridge Regression that benefit from
the use of kernels both in the input feature space and the output fea-
ture space. The main interest of such methods is that imposing various
regularization constraints still leads to closed form solutions. We show
especially how such an approach allows to handle unlabeled data in a
transductive setting of the network inference problem and multiple net-
works in a multi-task like inference problem. New results on simulated
data and yeast data illustrate the talk.
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MLSB’10: 4th Intl Wshp on Machine Learning and Systems Biology 3

Exploring transcription regulation through
cell-to-cell variability

Nir Friedman

The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract. The regulation of cellular protein levels is a complex process
involving many regulatory mechanisms. These regulatory mechanisms
introduce a cascade of stochastic events leading to variability of protein
levels between cells. Previous studies have shown that perturbing genes
involved in transcription regulation alters variability of protein levels, but
to date, there has been no systematic characterization of these effects.
Here we utilize single-cell expression levels of two fluorescent reporters
under a wide range of genetic perturbations in Saccharomyces cerevisiae
to identify proteins that affect expression variability. We introduce com-
putational methodology to determine the variability introduced by each
perturbation, and distinguish between global variability, affecting both
reporters in a coordinated manner, and local variability, affecting indi-
vidual reporters independently. Classifying genes by their variability phe-
notype identifies functionally coherent groups, which broadly correlate
with the different stages of transcriptional regulation. Specifically, we find
that perturbation of processes related to DNA maintenance, chromatin
regulation and RNA synthesis affect local variability, while processes re-
lated to protein synthesis and transport, cell morphology and cell size
affect global variability. In addition, we find that perturbations of many
processes related to chromatin regulation affect both global and local
variability. Finally, we demonstrate that the variability phenotypes of
different protein complexes provide insights into their cellular functions.
Our methodology provides tools for examining arising data on variabil-
ity, and establishes the utility of this phenotype as a tool in dissecting
the regulatory mechanisms involved in gene expression.
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MLSB’10: 4th Intl Wshp on Machine Learning and Systems Biology 5

Computational environments for modeling
biochemical networks

Ursula Kummer

BIOQUANT, University of Heidelberg, Germany

Abstract. Computational modeling is an integral and crucial part of
systems biology. It relies on accessible and user-friendly software to set
up models, model management and model analysis. Here, two systems
are presented that have been implemented for these needs. The first
one, COPASI, has been around since 2004 and is a standalone software
suite that encompasses many of the commonly used algorithms and ap-
proaches in computational modeling. Amongst others, it allows param-
eter estimation of model on the basis of experimental data sets with
diverse methods. The second software is SYCAMORE which is a web
based application designed to allow database driven modeling. Thus, it
interacts directly with databases for enzymatic kinetics and with tools
to estimate parameters based on protein structural data. Both systems
are constantly refined and features added.
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MLSB’10: 4th Intl Wshp on Machine Learning and Systems Biology 7

Deep sequencing and systems biology: steps on
the way to an individualised treatment of cancer

patients

Hans Lehrach

Max Plank Institute of Molecular Genetics, Berlin, Germany

Abstract. Biological processes are driven by complex networks of in-
teractions between molecular and cellular components. Predicting the
outcome of potential disturbances is of prime importance to be able
to prevent disease, as well as to identify possible therapies for diseases,
which are already present. To predict the behaviour of such complex net-
works, we will have to develop general models of the processes involved,
based on information on pathways derived from genetic and molecular
approaches, to individualise these by applying genomics scale analysis
techniques (e.g. genome and/or transcriptome analysis by next-gen se-
quencing techniques-genomics), and to explore the behaviour of these
models computationally (systems biology). We are using a combination
of high throughput sequencing of genome and transcriptome of both tu-
mor and patient to establish predictive models (virtual patients), which
ultimately will reflect the response of real patients to specific therapies
in oncology and other areas of medicine.
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MLSB’10: 4th Intl Wshp on Machine Learning and Systems Biology 9

Automatic quantification of subtle cellular
phenotypes in microscopy-based

high-throughput experiments

Vebjorn Ljosa

The Broad Institute of MIT and Harvard, USA

Abstract. Microscopy-based high-throughput experiments can provide
a view into biological responses and states at the resolution of singe cells.
CellProfiler, our open-source image-analysis software, has become widely
used by biologists to design custom analysis pipelines for complex high-
throughput assays. I will discuss our work in progress to automatically
quantify the prevalence of subtle cellular phenotypes in high-throughput
samples of cultured cells I will also touch briedly on the use of machine
learning to improve the accuracy and robustness of CellProfiler’s image
segmentation. Our classification tool, CellProfiler Analyst, enables a bi-
ologist to train a boosting classifier iteratively to detect rare, complex
phenotypes, and its usefulness has been demonstrated in several high-
throughput screens. Here, I will describe a method to learn phenotypes
without requiring hand-labeled cells for training. Instead, a classifier is
trained from negative and positive controls in the experiment, where the
positives are known to be enriched in the phenotype of interest, even if
only slightly (e.g., 55% vs. 45% penetrance). By nonlinearly projecting
cells into a random feature space, we can use efficient linear methods
but still benefit from nonlinear notions of similarity, and can overcome
experimental noise by training on millions of cells. Using the resulting
classifier to assign soft labels to each cell in the experiment, we can iden-
tify enriched samples (”hits”) nonparametrically. Furthermore, we are
developing techniques to automatically identify relevant cellular pheno-
types in large-scale chemical profiling experiments.
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Part II

Oral Presentations:
Extended Abstracts





High Throughput Network Analysis

Sumeet Agarwal1,2, Gabriel Villar1,2,3, and Nick S Jones2,4,5

1 Systems Biology Doctoral Training Centre, University of Oxford, Oxford OX1
3QD, United Kingdom

2 Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
3 Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom

4 Oxford Centre for Integrative Systems Biology, University of Oxford, OX1 3QU,
United Kingdom

5 CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, United
Kingdom

Introduction

Gene regulatory systems, metabolic pathways, neuronal connections, food webs,
social structures and the Internet are all naturally represented as networks; in-
deed, this may be said of any collection of distinct, interacting entities. Some-
times the value of this mathematical abstraction is clear; for instance, to min-
imise the spread of an epidemic it may be important to prioritise the immuni-
sation of individuals with high centrality. In many cases, however, one may not
know beforehand how a network representation could increase ones understand-
ing of its real-world counterpart.

It may be that abstracting a real-world system as a network discards all of
the relevant information, but this seems unlikely for such a high-dimensional
representation. Here, we presume that there is some valuable information en-
coded in the network; the problem is simply to find it. One approach for doing
so is to draw a full diagram of the network, since this can, if clearly drawn,
contain all of the recorded information. However, an unambiguous diagram is
only feasible for very small networks, in which case it is unlikely that the mathe-
matical abstraction will return any surprising results. To learn about a network
of any significant size it is therefore necessary to characterise it by summary
descriptions, which we will refer to as metrics.

A great variety of metrics exist in the literature, but studies that aim to
characterise a particular network typically employ a small subset of these, and
the choice of metrics is not systematic. Similarly, when a new model for gener-
ating synthetic networks is presented, the synthetic networks are compared to
real networks in only a few characteristics. This may be justified if one is inter-
ested only in the behaviour of a particular metric; but if the goal is to develop
synthetic networks that are statistically indistinguishable from real networks, it
is important to look at these networks in as many ways as possible. The same is
true of exploratory network analysis. Finally, it is typical for a new metric to be
introduced with a comparison to only a few existing metrics. The lack of a sys-
tematic comparison makes it difficult to tell which metrics give genuinely novel
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information about a network, and which pairs of metrics might be redundant or
complementary.

Efforts to address this have recently been made [2], but it remains true that
there is as yet no systematic program for characterising network structure [7]
that can be used to compare the diverse ways in which networks are analysed.
We introduce a more systematic framework, in the form of a matrix whose rows
correspond to networks, and columns to metrics; we term this the data matrix.
Each element of the data matrix contains the value of one metric as applied to
one network. In this paper we show that this framework enables the systematic
comparison of networks and metrics, and demonstrate its utility in the objective
selection of metrics for a given purpose; in model fitting; in the analysis of
evolving networks; and to determine the robustness of metrics to variations in
network size, network damage and sampling effects.

Networks

We collected approximately 1,200 real network data sets. These included sev-
eral types of biological networks (such as trophic, brain connectivity, protein
interaction and metabolic networks), social networks, computer networks and
miscellaneous others (including word adjacency and transportation networks).
In addition to these real networks, we generated synthetic networks from the
Erdős-Rényi, Watts-Strogatz, Barabási-Albert, fitness and graphlet arrival mod-
els.

Metrics

This study included approximately 60 base metrics taken from the literature.
In order to obtain single numbers from metrics that return distributions (over
nodes or links), we generated a number of summary statistics of these distribu-
tions, including measures of central tendency and skewness and also likelihoods
of certain model fits. Additionally, we include graph clustering or community de-
tection [3, 8] metrics, which return a partition of the network into subnetworks.
We then summarise this in a number of ways, such as computing partition en-
tropy and coarse-grained measures on the network of subnetworks.

Selected Results

Given that a large number of metrics exist for describing a network, selecting
appropriate subsets for particular tasks is important. Here we demonstrate two
applications of feature selection in a supervised learning setting.

First, we consider two sets of networks from a study on metabolic net-
works [4]. The first set consists of 43 networks that each represent the full
cellular network of an organism. The networks in the second set are subsets
of the first, including only the metabolic part of each of the 43 networks. We
used this classified network data to investigate how metabolic networks differ

14 MLSB’10: S. Agarwal et al.



from whole-cellular networks. We performed sequential feature selection to opti-
mise the linear discriminability between the metabolic networks from eukaryotes,
archaea and bacteria. A 95% classification success rate was obtained by using
just three metrics (Figure 1).

Fig. 1. Classification of metabolic networks of organisms from different kingdoms.

A natural extension of this approach is to look not only at a particular level
of species classification, but instead to attempt to take into account the entire
structure of evolutionary relationships between species, as represented by a phy-
logenetic tree. We are currently working on this using ideas from the area of
phylogenetic comparative methods [1, 5, 6]: one can assume a certain statistical
process (e.g., Brownian motion) underlying the variation in network character-
istics along the branches of a phylogeny, and then estimate the extent to which
different characteristics are constrained by the phylogenetic structure. As a rough
preliminary step towards this, we have taken the 43 metabolic networks referred
to above and grouped them at the leaves of a highly simplified phylogeny (Figure
2(a)). We represent each network by its feature vector of metrics, and then carry
out feature selection based on information gain at each of the branching points
in the phylogeny. Figure 2 shows that features based on closeness, a measure of
node centrality, are found to be amongst the most informative ones at each of the
3 branching points. This suggests that this metric is capturing some biologically
relevant network property, and it should be of interest to study this in greater
detail using the approach described above.

As an example to demonstrate unsupervised learning on more varied data, we
took a set of 192 networks from a wide range of disciplines and carried out prin-
cipal component analysis (PCA), utilising a set of 433 metrics. The results are
shown in Figure 3, with each data point representing a network’s position along
the two largest principal components and different colours depicting the different
domains from which the networks are drawn. We see that certain kinds of net-
works fall into very cohesive groupings, such as financial, fungal and metabolic
networks. On the other hand, some types of networks such as protein inter-

High throughput network analysis: MLSB’10 15



(a) Phylogenetic tree; branching points in
red

(b) Boxplots for
closeness minimum; Bac-
teria vs. Archaea/Eukarya

(c) Boxplots for
closeness minimum; Ar-
chaea vs. Eukarya

(d) Boxplots for
closeness mean; for the
5 Bacterial phyla

Fig. 2. 43 metabolic networks [4] are grouped according to a simplified phylogeny
(a). Network features representing the closeness distribution of nodes are found to be
significantly different in their distributions on either side of the 3 branching points
(b,c,d).

action, collaboration and social networks are much less well separated. We also
attempted building a supervised classification tree for this set of networks, which
resulted in a 10-fold cross-validation accuracy of nearly 80% and made use of
only about 15 of the 433 features.

Discussion

In some ways, the approach taken here is complementary to standard perspec-
tives in network science. When a new metric is introduced in the networks lit-
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Fig. 3. Results of PCA on a set of 192 networks, using 433 features. The two largest
principal components are shown.

erature, it may be motivated by an expectation of what aspects of a network it
will capture, or by some distinguishing feature of its calculation. Similarly, new
network models are assessed by how closely they match certain particular met-
rics. Here, we simply apply all of the available metrics to a set of networks, and
use the resulting data structure to explore the networks or metrics in an unprej-
udiced manner. This framework as a way of systematically comparing metrics
should be valuable for both explorative network analysis, and for finding the
best way to answer a particular question in a data-driven manner. It continues
to be work in progress, but we hope that once complete, public distribution of
the software and database built for this project will benefit users and see new
applications of the framework.
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Abstract. Learning with positive only examples occurs when the train-
ing set of a binary classifier is composed of examples known to be posi-
tive, and examples where the label category is unknown. Such a condition
largely affects the task of learning gene regulatory networks as biologists
does not aware the information whether two genes does not interact. We
introduce the problem of learning new gene–gene interactions from pos-
itive and unlabeled data and propose a roadmap of possible approches.

A recent trend in computational biology aims at using supervised approaches
to reconstruct large biological networks from genomic data [9]. In this paper
we focus on gene regulatory networks, the network of transcription dependences
among genes, known as transcription factors, and their binding site. A gene regu-
latory network is modeled as a directed graph where vertices, V = (v1, v2, v3, . . . , vn),
represent genes of an organism and edges their interactions. Each vertex is as-
sumed to have a description in term of a feature vector φ(v) ∈ Rn, where φ(v)
is a vector of expression levels of gene v in a set of p different DNA microar-
ray experimental conditions. The problem is to reconstruct the set of edges,
E ⊂ V × V , that represent the interactions among genes. Such a problem can
be formalized as a binary classification problem [9, 5], which is widely stud-
ied in machine learning [10]. It requires a training set of edge examples, T =
{(φ(e1), l1), (φ(e2), l2), . . . , (φ(eN ), lN )}, where φ(ei) ∈ Rn is an n-dimesional
feature vector of the edge ei ∈ E, and, li ∈ {−1,+1}, is a binary label represent-
ing the information that the pair of genes belonging to the edge interacts (+1)
or not (−1). The goal is to infer a function f(ex) : Rn → {−1,+1} that is able
to predict the binary label of any new edge ex ∈ Rn. In such a learning scheme
the feature vector of an edge, eij = (vi, vj), is built from the feature vector of
its gene pair components φ(eij) = ψ(φ(vi), φ(vj)). The basic principle is to use
the natural inductive reasoning to predict new regulations: if a gene v1 having
expression profile φ(v1) is known to regulate a gene v2 with expression profile
φ(v2), then all other couples of genes vi and vj , having respectively expression
profiles similar to φ(v1) and φ(v2) are likely to interact in a similar manner.
Different approaches have been proposed to build ad edge feature vector, as for
example vector concatenation, direct product, and tensor product [9]. Despite
the completeness of such a global learning scheme, in real applications, it reveals
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expensive in term of representation dimensionality and computational time. An
alternative, based on local models, has been proposed to ovecome such a lim-
itation [9]. It consists to partition the original problem into n sub–problems,
one for each vertex in the graph. A local classifier is built for each vertex in
the graph to discriminate the vertices that are connected and those that are non
connected to it. The final list of predicted edge can be obtained by combining the
edge predicted by each vertex classifier. The main advantage is that the dimen-
sionality of each classifier is drastically reduced because vertex feature vectors,
φ(vi), are used in place of edge feature vectors, φ(ei). Hovewer, with local models
there is no way to predict connection between free vertex, those with no known
connections, because no training data is available for those vertices.
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Fig. 1. Global and local models in learning gene regulatory networks

Figure 1 summarizes both global and local learning scheme of a gene reg-
ulatory network. Several learning algorithms have been proposed in literature,
neural networks, decision tree, logistic models, and Support Vector Machines
(SVM) [10]. Among all SVM gave promising results in the reconstruction of bi-
ological networks [7, 1, 11]. A crucial point in a binary classifier is that it needs
both positive and negative examples to learn effectively. This condition does not
hold in the context of gene regulatory network as biologists not aware the in-
formation whether two genes does not interact. Databases, such as RegulonDB
(http://regulondb.ccg.unam.mx), report only whether a gene regulate another
gene, not the contrary. Thus the problem of learning gene regulatory neworks
fall into the problem of learning with positive and unlabeled data as the overall
dataset is composed by two types of data: positive examples, i.e. known gene–
gene interactions, and unlabeled examples which could be both positive and
negative. The goal is to predict the unknown gene–gene interactions in the un-
labeled data. In literature can be distinguished approaches that depends on a
starting selection of reliable negative examples [12]; and approaches that does
not need labeled negative examples and basically tries to adjust the probability
of being positive estimated by a traditional classifier trained with labeled and
unlabeled examples [3]. We focus in particular on a class of approaches aiming
at selecting reliable negatives from the unlabeled set in order to have a two–class
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training set for a binary classifier. The main problem is that some of the selected
negative examples could in fact be positives embedded in the unlabeled data and
then affect negatively the binary classifier. The key success of such an approach is
to generate a sufficiently large negative training set without positive contamina-
tion. We experimented the extend to which a negative selection heuristic could
improve the performance of an SVM classifier by assuming an ideal heuristic
that is able to select candidate negatives with a prefixed fraction of positive
contamination λ ∈ [0, 1]. We simulated such an heuristic with a local learning
scheme on the experimental data of Escherichia coli made publicly available by
[4], consisting of 445 different microarray experimental conditions for 4345 genes
and 3293 experimentally confirmed regulations between 154 transcription factors
and 1211 genes (RegulonDB (version 5) [8]).
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Fig. 2. The performances of an SVM classifier (95% confidence interval) trained with
a set contamined with a fraction of positives assumed as negatives.

Figure 2 shows the results of such an experiment. The SVM classifier is
trained with a percentage of known positive examples and unlabeled data as-
sumed as negative examples but contamined with a fraction of positive examples.
Results can be interpreted as an upper bound for a negative selection heuristic.
The figure shows two measures of prediction accuracy, AUROC (Area Under
the ROC curve) and F-Measure, obtained with a ten fold cross validation. Both
performance measures grow when the percentage of known positives increases.
This is expectable as when more positives are known less unlabeled examples
could be positive. Instead, the effect of positive contamination on AUROC and
F-Measure is similar but with different effect size: F-Measure decreases quickly
when the fractions of positive contamination increases; while, AUROC signifi-
cantly decreases when the percentage of known positives is low. We believe that
this is an encouraging result to investigate for new negative selection heuristics
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that could improve the quality of the training set of a binary classifier. In [2]
we proposed a method that selects negative examples by exploiting the known
network topology. It is based over the assumption that a regulatory network
has no or few cycles and candidate negatives could be those given by the union
of the transitive closure of the known network Another approach could exploit
the over presence of network motifs, i.e. feed-forward loops, bi-fan clusters, and
single input modules. Network motifs are small connected subnetworks that a
network exhibits in significantly higher occurrences than would be expected just
by chance in a network with the same number of edges [6]. Therefore, candidate
negative edges could be those that may affect the overpresence of certain motifs,
if assumed as positive interactions.
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1 Introduction

High dimensional data sets typically consist of several thousand covariates and a
much smaller number of samples. Analysing such data is statistically challenging,
as the covariates are highly correlated, which results in unstable parameter esti-
mates and inaccurate prediction. To alleviate this problem, we have developed a
statistical model which uses a small number of meta-covariates inferred from the
data through a Gaussian mixture model, rather than all the original covariates,
to classify samples via a probit regression model. A graphical overview of our
model is presented in Figure 1 below.

The novelty of our approach is that our meta-covariates are formed consid-
ering predictor-outcome correlations as well as inter-predictor correlations. This
idea was partly inspired by recent empirical research that has shown that op-
timum predictive performance often corresponds to an intermediate trade-off
between the purely generative and purely discriminative approaches to classifi-
cation [2]. The main advantage over using a sparse classification model [1] is that
we can extract a much larger subset of covariates with essential predictive power
and partition this subset into groups, within which the covariates are similar.

Fig. 1. The meta-covariate method applied to gene expression data. Co-expression
clusters are identified and represented by a cluster mean. Each cluster mean is assigned
a weight according to its ability to distinguish between set A and set B data. Predictive
performance is used to iteratively update the clustering structure and the weights.
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Fig. 2. Graphical representation of the conditional dependencies within the meta-
covariate binary classification model.

2 Model details

In the following discussion, we will denote the N × D design matrix as X =
[x1, . . . ,xD] and the N × 1 vector of associated response values as t where each
element tn ∈ {0, 1}. The K × N matrix of clustering mean parameters θkn is
denoted by θ, the K × N matrix of clustering variance parameters σ2

kn by Σ
and the K × 1 vector of mixing coefficients πk by π. We represent the K × 1-
dimensional columns of θ by θn and the corresponding N × 1-dimensional rows
of θ by θk. The D×K matrix of clustering latent variables zdk is represented as
Z. The K × 1 vector of regression coefficients wk is denoted by w. Finally, we
denote the N × 1 vector of classification auxiliary variables yn by y.

The graphical representation of the conditional dependency structure in the
meta-covariate classification model is shown in Figure 2. From Figure 2 we see
that the joint distribution of the meta-covariate classification model is given by

p(t,y, X, Z,π, θ, Σ,w) = p(t,y|θ,w)p(X,Z|π, θ, Σ)p(π)p(θ|Σ)p(Σ)p(w).

The distribution p(X,Z|π, θ, Σ) is the likelihood contribution from our cluster-
ing model, which we chose to be a normal mixture model with unequal weights
and diagonal covariance matrices, that is,

p(X,Z|π, θ, Σ) =
D∏
d=1

K∏
k=1

πzdk

k N (xd|θk, Σk)zdk ,

where Σk = diag
(
σ2
k1, . . . , σ

2
kN

)
. Similarly, p(t,y|θ,w) is the likelihood con-

tribution from our classification model, which we chose to be a binary probit
regression model whose covariates are the means of each cluster, that is, θk,
k = 1, . . . ,K. Thus,

p(t,y|θ,w) =
N∏
n=1

p(tn|yn)p(yn|θn,w),

where

p(tn|yn) =

{
δ(yn > 0) if tn = 1
δ(yn ≤ 0) otherwise

and p(yn|θn,w) = N (yn|wTθn, 1).
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Finally, the model was completed by specifying a uniform prior for π, vague
inverse Gamma priors for σ2

kn, and vague normal priors for θ and w. Thus,

p(θ|Σ) =
K∏
k=1

N (θk|θ0, hΣk), p(Σ) =
K∏
k=1

N∏
n=1

Inv-Gamma
(
σ2
kn

∣∣ ν, ξ) ,
and

p(w) = N (w|0, lI),

where the hyperparameters θ0, h, ν, ξ and l are chosen such that weak prior
information is specified.

3 Summary of our inference approach

Given the number of clusters K, we would like to infer the full posterior distribu-
tion of the parameters. In our previously published research we derived an EM
algorithm that allowed us to maximise the joint distribution with respect to the
parameters and successfully applied this algorithm to a renal gene expression
dataset in a rat model of salt-sensitive hypertension [4]. Here, we use this EM
algorithm to initialise the following Gibbs sampler:

1. Sample π from Dirichlet (D1 + 1, · · · , DK + 1) , where Dk =
∑D
d=1 zdk.

2. Sample θkn from N ((enwk +mkn)vkn, vkn), where:

en = yn −
∑
k′ 6=k

wk′θk′n, mkn =
1
σ2
kn

(
D∑
d=1

zdkxnd +
θ0n
h

)
,

and

vkn =
[
w2
k +

1
σ2
kn

(
Dk +

1
h

)]−1

.

3. Sample σ2
kn from:

Inv-Gamma

(
1
2
Dk + ν +

1
2
,

1
2

D∑
d=1

zdk(xnd − θkn)2 +
1

2h
(θkn − θ0n)2 + ξ

)
.

(1)

4. Sample w from:

N
((
θθT + l−1I

)−1
θy,
(
θθT + l−1I

)−1
)
.

Note that the first component of w is set to 1, so that the model is identifiable.
5. Sample zd from Multinomial(ntrials, p1, . . . , pK), where ntrials = 1 and

pk = E(zdk) =
πk
(∏

n σ
2
kn

)−1/2 exp
{
− 1

2

∑
n

(xnd−θkn)2

σ2
kn

}
∑
j πj

(∏
n σ

2
jn

)−1/2 exp
{
− 1

2

∑
n

(xnd−θjn)2

σ2
jn

} .
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6. Sample yn from:

p(yn|y−n,π, θ, Σ,w, t, X, Z) ∝
{
δ(yn > 0)N (yn|wTθn, 1) if tn = 1
δ(yn ≤ 0)N (yn|wTθn, 1) otherwise.

7. We obtain the predictive classification of a new observation t∗, conditioning
on the test point x∗, using the Monte-Carlo estimate:

P (t∗ = 1|x∗, t, X) ≈ 1
I

I∑
i=1

Φ(wT
i θ∗i ),

where wi and θ∗i are the MCMC samples of w and θ∗ from their full conditional
distributions. Thus, we also need to sample θ∗k from N (m∗kv

∗
k, v
∗
k), where:

m∗k =
1
σ∗2k

(
D∑
d=1

zdkx
∗
d +

θ∗0
h

)
and v∗k =

[
1
σ∗2k

(
Dk +

1
h

)]−1

,

and sample σ∗2k from equation (1).

4 Application of gene selection

We apply our method to a publicly available breast cancer dataset [3] from
patients carrying mutations in the predisposing genes, BRCA1 or BRCA2, and
from patients not expected to carry either of these hereditary predisposing muta-
tions. This dataset contains 22 breast tumour samples: 7 BRCA1, 8 BRCA2 and
7 sporadic. There are 3,226 genes for each tumour sample. We use our method
to classify BRCA1 versus the others and compare our method to a Bayesian
sparse probit regression model [1]. We run the Gibbs samplers of both methods
for 100,000 iterations and discard the first half of each chain as burn-in. We
compared the methods using leave-one-out cross validation. Our results indicate
that our Gibbs sampling approach of inferring meta-covariates in classification
has competitive performance with Bayesian sparse probit regression.
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On the stability and interpretability of prognosissignatures in breast anerAnne-Claire Haury and Jean-Philippe VertMines ParisTeh - CBIO / Institut Curie / INSERM U900, Paris, Frane1 IntrodutionIn reent years, several genome-wide expression pro�les studies lead to the iden-ti�ation of prognosis moleular signatures to predit breast aner outomefrom gene expression measurements [5, 2, 10, 11, 9℄. These signatures, whih aremeant to have diret bearing on the therapy hoie, typially onsist in a fewtens of genes whih have been seleted by various feature seletion methods. Inaddition to their preditive power, the seletion of a few prognosis genes may leadto the identi�ation of new therapeuti targets and the eluidation of biologialpathways involved in metastati progression. However, it has been observed thatsignatures obtained from di�erent studies show very low overlap, raising ques-tions on the apaity of these methods to retrieve biologially relevant genes andproesses.In this work we wish to answer the questions: (i) how muh an we trustthe list of genes and the biologial funtions found in a preditive signature,and (ii) how do ommon feature seletion methods ompare to eah other inthis regard? We propose a rigorous framework to assess the auray, the sta-bility, and the interpretability of a feature seletion method, and ompare 8ommon feature seletion methods as well as ensemble feature seletion variantson three breast aner datasets. Results highlight the very low robustness ofmost existing methods, inluding ensemble methods, and raise a warning aboutthe over-interpretation of published signatures in terms of genes and biologialproesses.2 Feature seletion methodsWe ompared the 8 feature seletion methods listed below, whih span a widerange of approahes in feature seletion [6℄. For eah of them, we an ontrol thenumber of feature seleted by a method-spei� parameter.Filters. T-test, Cherno� Bound, Wiloxon rank-sum test, KL divergeneWrappers. Greedy forward seletion, SVM RFEEmbedded. Lasso, Elasti NetIn addition to these "single-run" feature seletion methods, we onsider for eahof them an "ensemble" feature seletion variant de�ned as follows. We bootstrap
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the original dataset B times, and apply the single-run feature seletion methodon eah bootstrap sample to get B rankings (r1...rB) of all genes. We thenompute, for eah gene j, the sore Sj =
∑B

b=1 exp(−rb
j/50), where rb

j is the rankof gene j for bootstrap b, and rank the genes by dereasing sore. A signatureof size L is obtained by taking the top L genes in this list. Intuitively, a genethat often appears in the top 50 genes for a given bootstrap sample will have agood �nal sore. Ensemble feature seletion were reently proposed to improvethe performane and stability of feature seletion methods [1, 7℄, and we wishhere to systematially ompare single-run and ensemble methods.3 Evaluating a feature seletion methodWe borrowed 3 breast aner expression datasets from publi repositories : theVan de Vijver dataset (24, 496 genes, 295 samples, 101 metastati) [10℄, theWang dataset (22, 215 genes, 286 samples, 107 metastati) [11℄, and the Sotirioudataset (7, 650 genes, 99 samples, 45 metastati). The proessing of these setswas the one of the original studies.For eah dataset, we evaluate the auray and stability of genes and biolog-ial funtions by k-fold ross validation, for k = 2, 5, 10, 20 : the samples of eahdataset are split in k non-overlapping groups, and k signatures are estimated by
k − 1 groups by leaving apart eah group in turn. We set a �xed number of 50boostrap repliations when ensemble methods were used.Auray. The auray measures how well a signature trained on k−1 groupspredits the metastati status of samples in the k-th group, as measured bythe balaned auray (1/2(sensitivity + spei�ity)) of a nearest entroidlassi�er trained on the signature genes [10℄. Although embedded and wrap-per feature seletion methods produe a lassi�er with their signatures, weheked that the performane of the nearest entroid lassi�er trained on thesignature was not signi�antly di�erent from the performane of the nativelassi�er. The balaned auray is averaged over the k folds.Stability. The similarity between two signatures S1 and S2 is omputed withthe Tanimoto oe�ient T (S1, S2) = |S1∩S2|

|S1∪S2| whih ranges between 0 (signa-tures have no gene in ommon) to 1 (signatures are the same). The stabilityof a feature seletion method is de�ned as the average Tanimoto similaritybetween the k(k − 1)/2 pairs of signatures.Interpretatability. For a given signature, we build a biologial interpretationby extrating the list of signi�ant Gene Ontology (GO) terms orrespondingto biologial proesses, at a false disovery rate of 5% for a hypergeometrialtest with orretion for multiple test [3℄. We ompare the biologial inter-pretation of two signatures by the Tanimoto oe�ient of the orrespondinglists of GO terms, and assess the intepretation stability of a method as theaverage Tanimoto similarity between the k(k − 1)/2 pairs of signatures.While k-fold ross-validation is a well-established method for auray estima-tion, it must be pointed out that it is positively biased for stability estimation
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for k > 2. More preisely, for a total of n samples two di�erent folds of (k−1)n/ksamples eah have on average (k − 2)n/k samples in ommon. The ase k = 2orresponds to a "hard" perturbation, where we assess the similarity of two sig-natures estimated on ompletely di�erent samples (but within a given study).The ases k > 2 orrespond to a "soft perturbation", where we observe how ro-bust a signature is when only a few samples hange. Although the later is oftenused to assess stability [1℄, the former (k=2) is more adequate to quantify theability of a signature to apture some intrinsi biologial information.4 Results and disussionIn this setion we summarize some of the main �ndings of this study. First, thepreditive balaned auray is overall in the range 60− 70% for most methodsin all datasets, on�rming the di�ulty to estimate very preise moleular signa-tures for breast aner prognosis [8℄. Seond, no method performs signi�antlybetter than the random drawing of a given number of genes (when at least 10genes are seleted), as already observed by [4℄. From these results, it is lear thatauray should not be the only riterion to use in order to prefer a signature.Moreover, we did not notie any signi�ant e�et of the signature size on au-ray, in the range 10 ∼ 100 genes. Figure 1 ranks the methods for a signature of
100 genes: an arrow from method 1 to method 2 means that method 1 performssigni�antly better than method 2 (Wiloxon signed-rank test aross folds, at5% signi�ane level).Regarding stability, we observe overall that �lter methods outperform wrap-per and embedded methods (Figure 2). However, while the Tanimoto oe�ientan be in the range 40 ∼ 50% in 10-fold ross-validation, it dereases when lessoverlap exist between the training samples (Figure 1) and drops to very smallvalues (at most 5%) in 2-fold ross-validation, i.e., when signatures are estimatedon non-overlapping samples.Surprisingly, ensemble feature seletion methods barely improve the situa-tion. While we observe like [1℄ that the stability of SVM RFE (as well as that ofGFS) signi�antly bene�ts from this tehnique, other methods do not, and thestability of SVM RFE with ensemble feature seletion remains muh below thatof simpler �lter methods (Figure 1 and 2).
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1 Introduction

One of the pressing open problems of computational systems biology is the
elucidation of the topology of genetic regulatory networks (GRNs) using high
throughput genomic data, in particular microarray gene expression data. The Di-
alogue for Reverse Engineering Assessments and Methods (DREAM) challenge
aims to evaluate the success of GRN inference algorithms on benchmarks of
simulated data [11–13]. In this article, we present a new algorithm for the infer-
ence of GRNs that was best performer in the DREAM4 In Silico Multifactorial
challenge3. In addition, we show that the algorithm compares favorably with ex-
isting algorithms to decipher the genetic regulatory network of Escherichia coli.
It doesn’t make any assumption about the nature of gene regulation, can deal
with combinatorial and non-linear interactions, produces directed GRNs, and is
fast and scalable.

An extended version of this works appears in [7]. Our software is freely avail-
able from http://www.montefiore.ulg.ac.be/~huynh-thu/software.html.

1.1 Network Inference with Tree-based methods

Our GRN inference algorithm decomposes the prediction of a regulatory network
between p genes into p different regression problems. In each of the regression
problems, the expression pattern of one of the genes (target gene) is predicted
from the expression patterns of all the other genes (input genes), using tree-based
ensemble methods Random Forests [1] or Extra-Trees [6].

One of the most interesting characteristics of tree-based methods is that it
is possible to compute from a tree a variable importance measure that allows
to rank the input features according to their relevance for predicting the target.
Several variable importance measures have been proposed in the literature for
tree-based methods. In our experiment, we consider a measure which at each
test node N computes the total reduction of the variance of the output variable
due to the split, defined by [2]:

I(N ) = #SVar(S)−#StVar(St)−#SfVar(Sf ), (1)
3 http://wiki.c2b2.columbia.edu/dream09/index.php/D4c2
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where S denotes the set of samples that reach node N , St (resp. Sf ) denotes its
subset for which the test is true (resp. false), Var(.) is the variance of the output
variable in a subset, and # denotes the cardinality of a set of samples. For a
single tree, the overall importance of one variable is then computed by summing
the I values of all tree nodes where this variable is used to split. For an ensemble
of trees, the importances are averaged over all individual trees.

We thus exploit the embedded feature ranking mechanism of a tree-based
ensemble method to solve each of the p regression problem. The importance of
an input gene in the prediction of the target gene expression pattern is taken as
an indication of a putative regulatory link. The p individual gene rankings are
then aggregated to get a global ranking of all putative regulatory links.

2 Results

2.1 Results on the DREAM4 multifactorial data

We report here our results on the DREAM4 competition, where one challenge
concerned the inference of five in silico regulatory network of p = 100 genes, each
from multifactorial perturbation data. Multifactorial data are defined as static
steady-state expression profiles resulting from slight perturbations of all genes
simultaneously. In total, the number of expression profiles for each network was
set to 100.

We took part in this challenge and submitted the rankings obtained by our
procedure using the Random Forests algorithm as tree-based method. Among
twelve challengers, our tree-based procedure got the highest areas under the
precision-recall curve (AUPR) and the receiver operating characteristic curve
(AUROC) on all networks. Table 1 shows the AUPR and AUROC values of our
predictions (RF) and those of the first runner-up (2nd best) as a comparison.

Table 1. AUPR and AUROC scores for DREAM4 Multifactorial challenge.

Method NET1 NET2 NET3 NET4 NET5

AUPR RF 0.154 0.155 0.231 0.208 0.197
2nd best 0.108 0.147 0.185 0.161 0.111

AUROC RF 0.745 0.733 0.775 0.791 0.798
2nd best 0.739 0.694 0.748 0.736 0.745

2.2 Performance on Escherichia coli dataset

In addition, we carried out experiments with our method on the inference of the
regulatory network of Escherichia coli, which has been used by several authors as
a benchmark. The dataset of expression profiles we used was retrieved from the
Many Microbe Microarrays (M3D) database [3] (version 4 build 6). It contains
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907 E. coli microarray expression profiles of 4297 genes collected from different
experiments at steady-state level. To validate the network predictions we used
3433 experimentally confirmed regulatory interactions among 1471 genes that
have been curated in RegulonDB version 6.4 [5].

We adopted the same evaluation protocol as in [4] that assumes that we have
prior knowledge about which genes of the gold standard (i.e. the experimentally
confirmed interactions curated in RegulonDB) are transcription factors. Figure
1 compares our procedure using Random Forests with three methods, CLR [4],
ARACNE [9], and MRNET [10], using exactly the same protocol. The predic-
tions obtained using our procedure outperform those obtained from ARACNE
and MRNET, and give a precision-recall curve very similar to CLR.
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Fig. 1. Precision-recall curves for the E. coli network.

3 Conclusions

We propose a new algorithm for GRN inference based on tree-based ensemble
methods that performs well on both synthetic and real gene expression data. The
algorithm is simple and generic, making it adaptable to other types of genomic
data and interactions.

So far, we focused on providing a ranking of the regulatory interactions. In
some practical applications however, one would like to determine a threshold on
this ranking to obtain a practical predicted network. As future work, we would
like to extend the technique developed in [8] to better assess the significance of
the predicted regulatory links and thus help determining a threshold.
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This paper is concerned with the modelling of whole-body metabolism. The
analysis is based on data collected from a range of experiments involving mice
in metabolic cages, whose food consumption, activity and respiration has been
monitored around the clock. Our aim is to model the dependencies between
these different variables by means of (differential) equations, as is customary
in systems biology. However, compared to the common setting of modelling on
the cellular level, where changes in concentrations are mostly instantaneous, in
whole-body metabolism we need to take into account the relatively slow process
of food digestion. As a result, the effects of eating will only be visible in the
activity and body-heat variables with a certain delay. To further complicate the
modelling, the digestive delay depends on the different rates of metabolism of
carbohydrates and fat. We accommodate for these (varying) delays in digestion,
by adding different time-shifted versions of the primary variables to the data,
and applying different levels of smoothing. These newly constructed variables
can be interpreted as representations of available blood sugars, with different
hypothetic rates of digestions. The Lagramge tool [2] was used to induce ordinary
and differential equations that model the enriched data. Lagramge is an equation
discovery tool that finds equations of arbitrary (configurable) complexity, and
subsequently performs the parameter fitting to the data.

1 The metabolic cage

Our data was gathered at the LUMC in a project concerning the Metabolic
Syndrome. In that study, 16 genetically identical mice were divided into two
equal-sized groups, one was put on a low (LFD), the other on a high fat diet
(HFD). During a 3-day period, various variables were recorded every 7.5 minutes
while the mice were in a metabolic cage. Such a cage creates a closed environment
in which the amount of oxygen and carbon dioxide can be controlled.

For the experiments below, the following variables are used: V O2 (oxygen
consumption), V CO2 (carbon dioxide production), RER (respiratory exchange
ratio), HEAT (aka. energy expenditure), F (food consumed) and X (total X-
activity). The activity was measured using a number of infrared beams in the
cage. RER and HEAT are calculated as follows:

RER = V CO2/V O2

HEAT = 3.185 · V O2 + 1.232 · V CO2
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Though just a simple ratio, RER is very useful, as it gives direct insight into
the energy source an organism digested to fuel its activity. Digestion of pure
carbohydrates would result in a RER of 1.00, pure fat in 0.707, and a 50/50 diet
would result in a RER of 0.85 [1]. This allows to differentiate between the two
diet groups.

2 Equation Discovery with Lagramge

The equation discovery tool Lagramge was used to generate equations that might
capture the essential variables involved during the various stages of metabolism,
along with their interplay. Lagramge is capable of discovering both ordinary
(OE) and differential (DE) equations. To restrict the search space, the structure
of equations can be defined through a context free grammar, which also allows
domain specific knowledge to be included, in the form of formulas. Such formu-
las, then need no longer be discovered, but are available to be included into new
candidate equations right from the start. Three different grammars were tested,
a Linear, Universal and Metabolic Cage (MC ) grammar. Because of space lim-
itations, we only present results for the MC grammar (shown below), which is
somewhat inspired by the Universal [2] grammar, but includes the information
of the RER and HEAT equations above.

E → E + F | E − F | E · F | E / F | const
F → RER | HEAT | V
RER → V / V
HEAT → const · V + const · V

3 Experiments

Three variables were chosen as targets for separate experiments: RER, HEAT
and X. Both OEs and DEs were sought using an exhaustive search setting of
depth 4, as this turned out to be a good trade-off between formula complexity
and computation time. Note that depth refers to the number of refinements by
means of one of the rules in the grammar.
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Data was preprocessed in two ways.
First, for all variables but X, the data
was modestly smoothed using the stan-
dard Gaussian kernel, G (µ, σ), with µ =
0, and σ = 1. As time points are rel-
atively far apart, some smoothing was
deemed necessary to compensate for
boundary effects. X was left out of this
procedure as, compared to eg. food di-
gestion, this is the most abrupt pro-
cess, and any spread in dependencies be-
tween X and other variables is already
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achieved by their smoothing. Furthermore, for the F variable, data was addi-
tionally smoothed using G (0, 0.5) and G (0, 1.5) to account for any gradual effects
the consumption of food may have.

More than any of the other variables, the energetic effects of food consump-
tion depend on time. As a second step, we therefore added four versions of each
F variable, to accommodate potential different rates of metabolism. The time
delays were 15, 30, 60 and 90 minutes, which resulted in 15 different F variables
in total, five for each kernel version. These were all simultaneously present in
the data file, the rationale being that Lagramge might include the important
variables from concurrent time scales all in a single equation. Here, the concur-
rent time scales are related to the various rates and stages of carbohydrate and
fat metabolism. Figure 1 shows a smoothing of the F variable for a HFD mouse
(first 12 hours are depicted only).

3.1 Results

Table 1 shows some of the best equations found using the MC grammar in an
exhaustive search of depth 4. For OEs and DEs the target is denoted like Td
and T ′d respectively, where d indicates the diet group. For the food variable (F ),
the σ subscript denotes the sigma used for the smoothing kernel and M denotes
the shift in minutes. A superficial scan of these results shows that a variety of
equation syntaxes are used, with linear equations dominating the RER results.
Furthermore, most equations involve at least one delayed F variable, with only
a single equation being based on the (slightly smoothed) direct F variable. This
clearly illustrates the effect that absorbed nutrients have on the mechanisms by
which fuel selection is regulated. Also, Table 1 shows that the activity X is a
major determinant of energy expenditure, as would be expected.

Table 1. Best equations found for each setting and diet type.

Target Equation

RERLFD 0.827 + Fσ1.5,M30 + 1.645 · Fσ1.5,M15 − 2.094 · Fσ1.5,M60

RERHFD 0.790 + Fσ1.5,M30 + 0.761 · Fσ1.5,M15 − 0.318 · Fσ1.5,M60

RER′LFD −0.004 · Fσ1.5,M90 + 0.005 · Fσ0.5,M0 + 0.181 · Fσ0.5,M90

RER′HFD −0.008 · Fσ1.5,M30 + 0.010 · Fσ0.5,M15 + 0.627 · Fσ0.5,M30

HEATLFD 0.441 + 1.218 · 10−4 · RER − 0.405 · X
HEATHFD 0.376 + Fσ1.5,M30 + 2.146 · 10−4 · Fσ1.5,M60 + 0.348 · X
HEAT ′LFD (−0.024 + Fσ0.5,M15) · (0.015 · Fσ0.5,M15 − 6.906 · Fσ0.5,M90)
HEAT ′HFD (0.872 − RER) · (−0.007 · Fσ0.5,M30 + 77.451 · Fσ1.0,M30)

XLFD (−0.221 + V O2) · (17217.2 · Fσ0.5,M0 − 16822.8 · V O2)
XHFD (−0.206 + V O2) · (6075.65 · HEAT − 784.577 · V O2)
X ′LFD −0.011 − Fσ0.5,M15 + Fσ0.5,M0/HEAT
X ′HFD −0.706 · HEAT + 1.400 · Fσ0.5,M90 − 9.480 · V CO2

For all three targets, figure 2 shows the number of occurrences of each version
of the Fσ0.5 variable in the top 1,000 DEs for each diet group. Here we can clearly
see a different pattern for the two groups. Compared to the HFL group there are

Equation Discovery for Whole-Body Metabolism Modeling: MLSB’10 37



 0

 50

 100

 150

 200

 250

 300

 350

 400

0 15 30 60 90

RER’LFD
RER’HFD

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 15 30 60 90

HEAT’LFD
HEAT’HFD

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 15 30 60 90

X’LFD
X’HFD

Fig. 2. Histograms of three target variables, each for two diets.
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many more occurrences of the non-shifted variable Fσ0.5,M0 in the LFD group
for HEAT ′ and X ′, while Fσ0.5,M15 is much more frequent for the HFD group
for RER′ and HEAT ′. This indicates that the energy from high-carb nutrition
is available in the blood stream quicker than for the high-fat diet.

Finally, for target X, figure 3 (left) shows an example of one of the found
equations (HFD group) compared to the original data, as a function of time. The
right figure shows the fit between the actual measurement and its model, for the
same equation. The linear correlation between these two functions is r = 0.84.

4 Conclusion

The experiments reported in this paper demonstrate that Lagramge can be an
important tool for modelling in systems biology. It allows the induction of rel-
atively elaborate algebraic and differential equations, including the fitting of
parameters, without requiring excessive computation times. Especially where
modelling of whole-body metabolism is concerned, the use of various time-
shifted variants of the primary data is essential, in order to account for different
metabolic processes that have an inherent delay, the details of which may not di-
rectly be measurable in the system. The experiments show that the difference in
metabolic rates of the two diets considered can be recognized from the difference
in time shifts that occur in the respective equations.
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Abstract. We deal with the problem of gene selection when genes must
be selected group-wise, where the groups, defined a priori and repre-
senting functional families, may overlap. We propose a new optimization
procedure for solving the regularization problem proposed in [4], where
the group lasso penalty is generalized to overlapping groups. While in [4]
the proposed implementation requires replication of genes belonging to
more than one group, our iterative procedure, provides a scalable alter-
native with no need for data duplication. This scalability property allows
avoiding the otherwise necessary pre-processing for dimensionality reduc-
tion, which is at risk of discarding relevant biological information, and
leads to improved prediction performances and higher selection stability.

1 Introduction

The analysis of microarray gene expression data has gained a central role in
the process of understanding biological processes. Among the many machine
learning algorithms proposed for gene selection, `1 regularization proved to be
a powerful approach. Nevertheless, when the number of samples is not sufficient
to guarantee accurate model estimation, one can exploit the prior knowledge
encoded in online repositories. Toward this end structured sparsity techniques
(see [10,5] and references therein) combine `1 regularization with available a
priori information, restricting the admissible sparsity patterns of the solution.
A promising structured sparsity penalty is proposed in [4], which restricts the
support of the solution to be a union of groups defined a priori. A straightforward
solution to the minimization problem underlying the method proposed in [4] is to
apply state-of-the-art techniques for group lasso in an expanded space, built by
duplicating variables that belong to more than one group. Though very simple,
such an implementation does not scale to large datasets, with significant group
overlap. For this reason we propose an alternative optimization that does not
requires gene replication and is thus more appropriate for dealing with high
dimensional problems. Our approach is based on a combination of proximal
methods (see for example [1]) and constrained Newton method [2], where the
latter is used to solve the dual problem associated to the proximity operator
of the regularization term. We empirically show that our scheme significantly
outperforms state-of-the-art algorithms with data duplication, and has improved
prediction and selection performance when applied to microarray data.
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2 The GLO-pridu Algorithm

Given a response vector y = (y1, y2, ..., yn), a n × d gene expression matrix X,
and B subsets of genes G = {Gr}Br=1 with Gr ⊂ {1, . . . , d}, we consider the
minimization of the functional Eτ (β) := 1

n ‖Xβ − y‖2 + 2τΩG(β) with

ΩG(β) = inf{
B∑
r=1

‖vr‖ : vr ∈ Rd, supp(vr) ⊂ Gr,
B∑
r=1

vr = β}.

The functional ΩG was introduced in [4] as a generalization of the group lasso
penalty to allow overlapping groups, while maintaining the group lasso property
of enforcing sparse solutions which support is a union of groups.

If one needs to minimize Eτ for high dimensional data, the use of standard
second-order methods such as interior-point methods is precluded, since they
need to solve large systems of linear equations. On the other hand, accelearated
first order methods based on proximal methods [1] are accurate, and already
proved to be a computationally efficient alternative in many machine learning
applications [3,7]. A proximal algorithm for minimizing the sum F +Ω of a dif-
ferentiable functional F and a not differentiable penalty Ω combines the forward
gradient descent step on F with the evaluation of the proximity operator of Ω

βp = proxτ/σΩG
(
βp−1 − (σ)−1∇F (βp−1)

)
(1)

for a suitable choice of σ. Due to one-homogeneity of ΩG , its proximity operator
reduces to the identity minus the projection onto the convex set K = {v ∈
Rd, ‖v‖G ≤ 1 ∀G ∈ G}, with ‖β‖G = (

∑
j∈G β

2
j )1/2 . While in group lasso

(without overlap, i.e. Gr∩Gs=∅,∀r 6=s) the projection can be computed group-
wise, so that the proximity operator resolves to group-wise soft-thresholding(

Sτ/σ(β)
)
j

= (||β||Gr − τ/σ)+ βj , for j ∈ Gr, for r = 1, . . . , B, (2)

with general overlap the proximity operator has not a closed a form and must
be computed approximatively as in the following theorem.

Theorem 1. Given β ∈ Rd, G = {Gr}Br=1 with Gr ⊂ {1, . . . , d}, the projection
onto τK with K = {v ∈ Rd, ‖v‖Gr

≤ τ for r = 1, . . . , B} is given by

[πτK(β)]j=βj(1+
B̂∑
r=1

λ∗r1r,j)
−1 with λ∗=argmax

λ∈RB̂
+

−
d∑
j=1

β2
j (1+

B̂∑
r=1

1r,jλr)−1−
B̂∑
r=1

λrτ
2,

Ĝ = {G ∈ G, ‖β‖G≥τ} := {Ĝ1, . . . ,ĜB̂}, and 1r,j is 1 if j ∈ Ĝr and 0 otherwise.

The above maximization problem is the dual problem associated to the pro-
jection onto K̂(β) = {v ∈ Rd, ‖v‖G ≤ 1 ∀G ∈ Ĝ} ⊃ K, which involves only the
B̂ ≤ B active constraints. In order to solve it efficiently we employ Bertsekas’
constrained Newton method [2]. In Algorithm 1 we report our scheme for com-
puting the regularization path for problem β(τ) = argmin Eτ (β), i.e. the set of
solutions corresponding to different values of the parameter τ1 > . . . > τT . The
proximal algorithm used in 1 is an acceleration of (1) inspired to [6].
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Algorithm 1 GLO-pridu Algorithm
Given: τ1 > τ2 > · · · > τT ,G, η ∈ (0, 1), δ ∈ (0, 1/2), ε0 > 0, ν > 0
Let: σ = ||ΨTΨ ||/n, β(τ0) = 0
for t = 1, . . . , T do

Initialize: β0 = β(τt−1), λ∗0 = 0
while ||βp − βp−1|| > ν||βp−1|| do
• Set w = hp − (nσ)−1ΨT (Ψhp − y)
• Compute βp = πτ/σK(w) as in Th. (1) via Bertsekas’ Algorithm
• Update cp = (1− tp)cp−1, tp+1 = 1/4(−cp +

p
c2p + 8cp),

hp+1 = βp(1− tp+1 + tp+1/tp) + βp−1(tp − 1)tp+1/tp
end while
β(τt) = βp

end for
return β(τ1), . . . , β(τT )

3 Numerical Experiments

Projection vs duplication In [4] the authors show that minimizing Eτ is
equivalent to minimizing the standard group lasso functional in an expanded
space built by replicating variables belonging to more than one group. Such a
formulation allows using any state-of-the-art algorithms for group lasso. In terms
of proximal methods, a solution is given by substituting in Algorithm 1 the prox-
imity operator I−πK with the group-wise soft-thresholding of Eq.(2) (we refer
to this algorithm as GL-prox). In the following we compare the performances of
GLO-pridu and GL-prox in terms of computing time on a set of synthetic data.
Note that we consider only the computing performance and not the prediction
and selection performance, since the two algorithms lead the same solution. The
input variables x = (x1, . . . , xd) are uniformly drawn from [−1, 1]d. The labels y
are given by y = cβ · x+ w, where β is equal to 1 on the first 240 variables and
0 otherwise, w∼N(0, 1), and c sets the signal to noise ratio to 5:1. We define
G1 =[1, . . . , 100], G2 =[81, . . . , 180], and G3 =[1, . . . , 20, 161, . . . , 240] (20% pair-
wise overlap). The remaining B−3 groups are built by randomly drawing sets
of 100 indexes. We let n = 2400, and vary d and B =αd/100, where α can be
thought of as the average number of groups a single gene belongs to. We then
evaluate the running time for computing the entire regularization path for GL-
prox and GLO-pridu, repeat 20 times for each pair (d, α), and report the results
in Tab.1. When α gets significant there is a clear advantage in using GLO-pridu.

Microarray data We consider the microarray experiment presented in [4]
where the breast cancer dataset compiled by [9] (8141 genes for 295 tumors)

Table 1. Running time (mean ± standard deviation) in seconds. For each d and α,
the left and right side correspond to GLO-pridu, and GL-prox, respectively.

α = 1.2 α = 2 α = 5

d=1000 11.7± 0.4 24.1± 2.5 11.6± 0.4 42± 4 13.5± 0.7 1467± 13
d=5000 31± 13 38± 15 90± 5 335± 21 85± 3 1110± 80
d=10000 16.6± 2.1 13± 3 90± 30 270± 120 296± 16 > 12h
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is analyzed with the group lasso with overlap penalty and the 637 gene groups
corresponding to the MSigDB pathways [8]. In [4] the accuracy of a logistic
regression is estimated via 3-fold cross validation (CV). On each split the 300
genes most correlated with the output are selected and the optimal τ is chosen
via CV. 6, 5 and 78 pathways are selected with a 0.36± 0.03 CV error. We ap-
plied GLO-pridu to the entire data set with two loops of k-fold CV (k= 3 for
testing). The obtained CV error is 0.33 ± 0.05 and 0.30 ± 0.06, with k= 3 and
k= 10 for validation, respectively. In both cases the number of selected groups
is 2, 3, and 4, with 1 group in 3, and 3 pathways selected in 2 out of 3 splits.
Not only the CV is lower, but also the number of selected groups is much more
stable when avoiding the correlation-based filtering. Note that the improved CV
error might be due to the second optimization step (RLS). The computing time
for running the entire framework for GLO-pridu (comprising data and pathways
loading, recentering, selection via GLO-pridu, regression via RLS on the selected
genes, and testing) is 850s (k=3) and 3387s (k=10).

4 Discussion
We presented an efficient optimization scheme, whose convergence is theoreti-
cally guaranteed, for selecting genes from microarray data according to biological
priors. Our procedure allows computing the solution of group lasso with overlap,
even in high dimensional problems and large groups overlap, and has a great
computational advantage with respect to state-of-the-art algorithms. When ap-
plied to microarray data, it has improved prediction and selection performance,
since a possibly dimensionality reduction step is no longer needed.
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1 Introduction

Protein-protein interactions govern most processes at cellular level [4, 6]. Signifi-
cant efforts are currently being invested in the extraction of molecular complexes
from protein-protein interactions (PPI) networks. The correct identification of
these complexes (i.e., of groups of proteins which display co-regulation patterns)
is one of the main building blocks for understanding cellular processes and bi-
ological functions. Graph clustering techniques are commonly used as a device
to direct the discovery of these complexes. Yet, finding the optimal parameter
configuration for processing a given PPI network is highly time-consuming and
dataset-dependent. For example, experiments reported in [1] required the anal-
ysis of 2,916 parameter combinations to compute the optimal parameterization
of the Restricted Neighborhood Search Clustering algorithm (RNSC) [2].

We present the BorderFlow algorithm, a parameter-free approach to the clus-
tering of weighted directed graphs. We evaluate our approach on the results of six
high-throughput experiments against the Markov Clustering algorithm (MCL,
[5]), one of the leading clustering algorithm for clustering PPI graphs [1]. We
show that our algorithm does not only attain state-of-the-art accuracy but that
it outperforms MCL in separation.

2 The BorderFlow Algorithm

BorderFlow is a general-purpose local graph-clustering algorithm for directed
and undirected weighted graphs. It was designed initially for the computation of
semantic classes out of large term-similarity graphs [3]. The algorithm computes
a soft and complete clustering of the input graph, i.e., BorderFlow assigns each
node to one or more clusters.

BorderFlow implements a seed-based approach. The default setting for the
seeds consists of taking all nodes in the input graph as seeds. For each seed
v, the algorithm begins with an initial cluster X containing only v. Then, it
expands X iteratively by adding nodes from the direct neighborhood of X to X
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until X is node-maximal with respect to a function called the border flow ratio.
The same procedure is repeated over all seeds. As different seeds can lead to the
same cluster, identical clusters (i.e., clusters containing exactly the same nodes)
that resulted from different seeds are subsequently collapsed to one cluster. The
set of collapsed clusters and the mapping between each cluster and its seeds are
returned as result.

2.1 Formal Specification

Let G = (V , E, ω) be a weighted directed graph with a set of vertices V , a set
of edges E and a weight function ω, which assigns a positive weight ω(e) ∈ R+

to each edge e ∈ E. Non-existing edges e are considered to be edges such that
ω(e) = 0. Let X ⊆ V be a set of nodes. We define the set i(X) of inner nodes,
b(X) of border nodes and n(X) of direct neighbors of X as follows:

i(X) = {x ∈ X|¬(∃y ∈ V \X : ω(xy) > 0)},
b(X) = {x ∈ X|∃y ∈ V \X : ω(xy) > 0},
n(X) = {y ∈ V \X |∃x ∈ X : ω(xy) > 0}.

(1)

For two subsets X and Y of V , we define Ω(X,Y ) as the total weight
of the edges from X to Y (i.e., the flow between X and Y ), i.e. Ω(X,Y ) =∑
x∈X,y∈Y

ω(xy). The border flow ratio F (X) of X ⊆ V is then defined as follows:

F (X) =
Ω
(
b(X), X

)
Ω
(
b(X), V \X) =

Ω
(
b(X), X

)
Ω
(
b(X), n(X)

) . (2)

The aim of BorderFlow is to compute non-trivial local maximums1 of F ().
Accordingly, for each node v ∈ V , BorderFlow computes a set X of nodes that
maximize the ratio F (X) with respect to the following maximality criterion:2

∀X ⊆ V, F (X) maximal⇔ ∀X ′ ⊆ V ∀v ∈ n(X),
X ′ = X + v ⇒ F (X ′) < F (X).

(3)

The computation of the cluster X for v ∈ V begins with X = {v}. Then,
X is expanded iteratively. Each of these iterations is carried out in two steps.
During step 1, the set C(X) of candidates u ∈ n(X) which maximize F (X + u)
is computed as follows: C(X) := arg max

u∈n(X)

F (X + u).

In step 2, BorderFlow picks the candidates u ∈ C(X) which maximize the
flow Ω(u, n(X)). The final set of candidates Cf (X) is thus

Cf (X) := arg max
u∈C(X)

Ω(u, n(X)). (4)

1 One trivial solution to this equation would be to put all nodes in one cluster, leading
to an infinite border flow ratio.

2 For the sake of brevity, we shall utilize the notation X +c to denote the addition of a
single element c to a set X. Furthermore, singletons will be denoted by the element
they contain, i.e., {v} ≡ v.
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The elements of Cf (X) are added to X if and only if the condition F (X ∪
Cf (X)) ≥ F (X) is satisfied. The insertion of nodes by the means of steps 1
and 2 is iterated until C(X) = ∅. X is then returned as the cluster for v. The
clustering procedure is repeated over all nodes of V .

2.2 A heuristic for maximizing the border flow ratio

The implementation proposed above demands the simulation of the inclusion
of each node in n(X) into the cluster X for computing F (X). Such an im-
plementation can be time-consuming as nodes in PPI graphs can have a high
number of neighbors. We can show that for a node v ∈ n(X), maximizing
∆F (X, v) = F (X + v)− F (X) can be approximated by maximizing:

f(X, v) =
Ω(b(X), v)
Ω(v, V \X)

. (5)

By setting C(X) := arg min
u∈n(X)

1/f(X,u), BorderFlow can be implemented

efficiently.

2.3 Hardening

A drawback of BorderFlow is its tendency to generate many overlapping clus-
ters. We can address this drawback by using a simple hardening approach to
post-process BorderFlow’s results. Let C1 ... Cη be the clusters computed by
BorderFlow. The hardening of the results of BorderFlow is as follows:

1. Discard all clusters Ci such that ∃Cj : Cj ⊂ Ci.
2. Order all remaining Cj into a list L = {λ1, ..., λm} in descending order with

respect to the number of seeds that led to their computation.
3. Discard all λz ∈ L with z > k, with k being the smallest index such that the

union of all λi with i ≤ k equals V
4. Re-assign each v to the cluster C such that Ω(v, C) is maximal.
5. Return the new clusters.

Since our hardening approach can be applied to both the node-optimal and
the heuristic version of the algorithm, we will distinguish the following four
versions of BorderFlow in the remainder of this paper: OS (Optimal, Soft), OH
(Optimal, H ard), HS (H euristic, Soft) and HH (H euristic, H ard).

3 Results and Discussion

We evaluated our approach using exactly the same data sets and reference data
utilized in [1] against MCL, one of the leading clustering algorithm for PPI
graphs [6]. As the graphs were undirected and unweighted, we set all edges to be
symmetric and set their weight to 1. As evaluation metric we used the separation
as defined in [1]. The results of our evaluation as shown in Fig. 1(a) show that
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the hardened versions of the BorderFlow results outperform the soft versions:
HH outperforms HS by 12.24% while OH improves upon OS by 13.63%. Fur-
thermore, OH is 0.1% better than the HH w.r.t. separation. Yet, the runtimes
of OH are between 2 and 3 orders of magnitude greater than those of HH.
Thus, HH should be used for processing large graphs such as PPI graphs. In
addition to not necessitating any form of parametrization, the hardened results
of our algorithm outperform MCL on all data sets by an average of 5.22% (OH).
Consequently, OH and HH are superior to the algorithms presented in [1, 6].

(a) Separation (b) Accuracy

Fig. 1. Comparison of the separation and accuracy of BorderFlow and MCL in %.

For the sake of completeness, we also compared BorderFlow and MCL w.r.t.
accuracy (see Figure 1(b)). Although there is no statistically significant difference
between BorderFlow and MCL (t-test, confidence level = 95%), HH is 2.12%
less accurate than MCL in average . Yet, it has been pointed out in previous
work [1] that the accuracy metric does not adequately reflect the quality of a
clustering, as a clustering containing one large cluster and many small clusters
can lead to high accuracy values without reflecting the reference data.
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Abstract. We present a novel inference methodology to reverse engi-
neer the dynamics of transcription factors (TFs) in hierarchical network
motifs such as feed-forward loops. The approach we present is based
on a continuous time representation of the system where the high level
master TF is represented as a two state Markov jump process driving a
system of differential equations. We present an approximate variational
inference algorithm and show promising preliminary results on a realistic
simulated data set.

Keywords: transcriptional regulation, stochastic process, Bayesian in-
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1 Introduction

Transcription factor (TF) proteins play a fundamental role in mediating envi-
ronmental signals in cells. Despite their importance, experimental techniques
for measuring their activation state are hampered by several technical problems:
TFs are often low expressed, and they are designed to transit fast between active
and inactive states through post-translational modifications. For this reasons, an
idea that has gained considerable attraction in the machine learning community
is to treat TF activity as latent variables in models of gene expression, to be
inferred from mRNA levels of target genes. In particular, in recent years there
has been considerable interest in using realistic ODE models of transcription,
placing a stochastic process prior over TF activities [1–4]. While this approach
holds much promise, it has so far been restricted to simple motifs with one (or
recently more [5]) TF directly controlling a number of targets.

In this work we extend the work of [3] to hierarchical motifs such as feed-
forward loops (FFL). This type of motif is frequently encountered in transcrip-
tional regulatory networks due to its important function in biological signal
processing [6]. We use the Bayesian framework and a variational approximation
in order to solve the inference problem. Initial results on a simulated data set
show the promise of the approach and the identifiability of the model.
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2 Mathematical methods

2.1 Feed-Forward Loop model

We consider an OR gate FFL consisting of a master TF (whose binary activity
state is denoted as µ), a slave TF (whose protein expression we denote as x) and a
target gene whose mRNA expression we denote as y. A graphical representation
of the network is given in Figure 1. In order to model the FFL, we assume

Fig. 1. Feed-forward loop (FFL) network motif.

that the activation of the master TF is triggered by a fast post-translational
modification (e.g. a phosphorylation). In contrast, we assume that regulation of
the target gene by the slave TF is governed by a logical function. Mathematically,
the model is described by the following equations:

dx(t)
dt

= A1µ(t) + b1 − λ1x(t) (1)

dy(t)
dt

= Aµ(t) + b− λy(t) +A2Θ[x(t)− c]. (2)

Here Θ represents the Heaviside step function and c represents a critical thresh-
old for the effect of the slave TF to become felt. Following Sanguinetti et al. [3],
the prior distribution for the master TF is modeled by a two-states Markov jump
process (the telegraph process), which is a continuous time stochastic process that
switches with certain transition rates f±(t) between an ON state and an OFF
state. The first equation refers to the regulation of x by the master TF. As µ is
a binary variable, it represents a logical approximation to a Michaelis-Menten
model of transcription [7] where: A1 is the sensitivity of the gene encoding x for
the master TF; b1 is the basal transcription rate and λ1 is the decay rate of the
mRNA. The second equation is similar to the first but it contains an additional
term which takes into account the regulation of the target gene by the slave TF.

Assuming that the expression level of the target gene and the slave TF are
observed, we want to infer the posterior distribution over the activity of the
master TF.
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2.2 Variational inference

We assume that observations are obtained from the true values by corruption
with additive i.i.d. Gaussian noise p(ŷ|y) = N (ŷ|y, σy). Combining the likelihood
of the observations with the prior distribution over the process p(µ0:T ) enables
to find the posterior distribution according to the Bayes’ theorem:

ppost(µ0:T |ŷ) =
1
Z
p(ŷ|µ0:T )pprior(µ0:T ) (3)

where µ0:T denotes the whole trajectory in continuous time of the master TF.
The inference problem is solved by approximating the posterior distribution
ppost(µ0:T ) with another distribution q(µ0:T ) that is a telegraph process with
transition rates g±(t). The approximating solution is obtained minimising the
Kullback-Leibler (KL) divergence [8] between the posterior process and the ap-
proximating Marvok process:

KL [q||ppost] =
∫

dq log
q

ppost
= KL [q||pprior] + lnZ − Eq[ln

N∏
i=1

p(x̂j |xj)] (4)

In this sense, the KL divergence becomes a function of the transition rate for the
approximating process g±, and the problem turns into an optimisation problem.
The first term on the right hand side of (4) represents the KL divergence between
the prior distribution, which is a telegraph process with prior transition rates
f±, and the approximating posterior distribution, which is another telegraph
process with transition rates g± [9]. The key technical difficulty is the estimation
of the expectation of the Heaviside step under the approximate posterior of the
µ process. To overcome this, we use a Laplace-type approximation:

〈Θ[x(t)− c]〉 = P (x(t) > c) ∼
∫ ∞
c

N (x| 〈x(t)〉 , 〈x(t)2
〉− 〈x(t)〉2)dx(t) (5)

This allows us to compute the functional derivatives of the KL divergence with
respect to the rate functions and to solve the optimisation problem by gradient
descent. Tha same strategy can be used in order to compute gradients with re-
spect to parameters, but we have not implemented it yet. Details of the algorithm
are omitted for space reasons and will be given elsewhere.

3 Results

We tested our model on a simulated data set. Observations are given by adding
Gaussian noise with SD of 0.03 to 10 discrete time points drawn from the model
with a given TF activity (input) and known parameters. The inferred posterior
TF activity compared with the true input is showed in Figure 2(A). Figures 2(B-
C) show the posterior first moment of x and y, with observations.
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4 Inference in hierarchical transcriptional network motifs

Fig. 2. Results on simulated data. (A) Inferred posterior mean activity (dashed red)
versus true input impulse (solid blue). (B) Posterior first moment of x (solid red), ob-
servations of x (blue cross) and critical threshold c (dashed-dotted green). (C) Posterior
first moment of y (solid red) and observations of y (blue cross). The parameters of the
model were chosen as: A1 = 3.7 · 10−3, b1 = 5 · 10−4, λ1 = 7 · 10−4, A = 2.7 · 10−3,
b = 8 · 10−4, λ = 5 · 10−4, A2 = 2.5 · 10−3, c = 4.2 · 10−1.

4 Conclusion

The preliminary results shown here indicate that inference in stochastic models
of hierarchical network motifs is in principle feasible. Further steps will include
optimising model parameters and considering AND gate FFLs, as well as apply-
ing to real data from stress response experiments in bacteria.
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A note on inference for reaction kinetics with
monomolecular reactions

Manfred Opper and Andreas Ruttor1

Computer Science, TU Berlin

Abstract. We develop a variational lower bound to the free energy for
stochastic reaction models with monomolecular reactions which can be
used for approximate inference. This bound is based on simpler partition
function which can be evaluated efficiently.

1 Monomolecular reactions

The problem of probabilistic inference for stochastic reaction models in systems
biology has attracted considerable interest, see e.g. [1]. A variety of inference
techniques like sampling approaches, variational bounds and weak noise approx-
imations have been considered in order to solve the inference problems efficiently.
While these methods are usually general enough to be applicable to arbitrary
reaction models, one might ask the question whether one can work out approx-
imations for specific models which allow for an exact treatment of a nontrivial
part of the problem. In this submission we will show that specific types of aux-
iliary likelihoods can be efficiently computed for models with monomolecular
reactions. These can be used to compute a variational lower bound to the true
free energy.

The state of reaction models is described by a vector n = (n1, . . . , nM ),
where ni is the number of molecules of species i. The stochastic dynamics
is assumed to be a Markov jump process (MJP) defined by a rate function
f (n′|n) which determines the temporal change of transition probabilities via
P (n′, t+∆t|n, t) ' δn′,n +∆t f (n′|n) for ∆t→ 0. The rate f (n′|n) is the sum
of the rates for all individual processes which lead from n to n′.

Monomolecular reaction systems are defined by three possible types of pro-
cesses which have rates and corresponding changes of states n′ → n given by

cjknj with n′l = nl + δlk − δlj
c0j with n′l = nl + δlk (1)

cj0nj with n′l = nl − δlj .
The rates are at most linear in the number of molecules/species. In the first
reaction, molecules are converted from type j into type k. The second reaction
describes a creation of molecules of type j and the third the corresponding
deletion or degradation process. Only a single component or a pair of components
change by an amount ±1. In the latter case the changes are of opposite signs.
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Although such processes do not contain chemical reactions, they have been
applied to stochastic reaction-diffusion systems e.g. for the Bicoid protein evo-
lution in Drosophila. Approximate inference for this model has been discussed
within a variational mean field approach [3] and a weak noise approximation [4].

If we assume that there are typically about N molecules/species, then the
Master equation, which governs the temporal evolution of the marginal prob-
ability Pt(n) is a system of linear equations of the size O(NM ). Remarkably,
at least in principle, an exact solution can be given in terms of convolutions of
a multivariate Poisson distribution and M multinomial distributions [2]. If M
grows large, e.g. in applications to reaction diffusion models, the practical use
of such an exact solution may be questioned.

If we consider the evolution of the first moment m(t) = E[n(t)] instead, the
situation is much simpler. For monomolecular reactions one simply obtains the
”classical” linear (!) rate equations

dmi

dt
= c0i +

M∑
j=1

cjimj −
M∑
j=0

cijmi (2)

which are of the size M rather than O(NM ).

2 Inference

In order to estimate rate constants from a set of noisy observations yk, k =
1, . . . ,K taken at discrete times tk one can apply a likelihood based approach,
such as a Bayesian one. In this case, the partition function which equals the
probability of the observations

Z = E

[
K∏
k=1

P (yk|n(tk))|n(0) = n

]
(3)

given all parameters is required. Here E[. . .] denotes an expectation over all
paths of the process with given initial condition n at t = 0.

A typical form of the conditional likelihood P (yk|n(tk)) could be

P (yk|n(tk)) ∝ exp

[
− 1

2σ2

∑
k

||yk − L[n(tk)]||2
]

(4)

which describes a noisy measurement of a linearly transformed vector n. The
linear transformation might describe a summation of all molecule numbers in a
certain window of many ”neighbouring” species (cells in a compartment model)
by the measuring process. We may then assume that the dimensionality of y
stays finite even when the number of species M grows large.
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3 Exact solution for an artificial likelihood

In principle, the partition function Z could be calculated recursively by a back-
ward type of algorithm. Again, the size of the corresponding system of equa-
tions is expected to be too large to be of practical use. However, for the case
of monomolecular reactions exact solutions are possible if we restrict ourselves
to a family of artificial ”likelihoods” which are simpler compared to (4). The
corresponding partition functions are defined by

Z0
.= E

[
exp

{
K∑
k=1

u>(tk)n(tk)

}
|n(0) = n

]
(5)

where the ”log - likelihood” u>(tk)n(tk) is linear rather than quadratic in n. To
compute Z0, we consider the function

ψt(n) .= E

[
exp

{∫ T

t

v>(s)n(s) dt

}
|nt = n

]
, (6)

where v(s) =
∑
k δ(s−tk)u(s). It is easy to show that ψt(n) fulfils the backward

type equation

d

dt
ψt(n) =

∑
n′ 6=n

f(n′|n) [ψt(n)− ψt(n′)]− v>(t)n(t)ψt(n) (7)

which must solved backwards in time with ψT (n) ≡ 1. This is again of the large
dimensionality O(NM ). Using the form of the rates (2), we can show that the
solution of (7) is of the form ψt(n) = a(t)eb(t)>n where the functions a(t) and
ri(t)

.= ln bi(t) obey the systems of equations

dri
dt

= −
∑
k 6=0

cik(rk − 1) ; i = 1, . . . ,M
da

dt
= −a

∑
k 6=0

c0k(rk − 1) (8)

Here we have included a diagonal element for the matrix cij which is defined by
cii

.= −∑j=0,j 6=i cij . The first equation holds for times t between two ”observa-
tions”. ri(t) jumps at the times tk by ri(t−k ) = ri(t+k )eui(tk) for k = 1, . . . ,K.

Note, that equations (8) are of small size M compared to (7). For reaction
diffusion problems it is even possible to take the limit M →∞ which results in
a linear partial differential equation. For simple geometries one can solve these
easily using e.g. Fourier methods.

4 Variational lower bound to the free energy

Unfortunately, Z0 in (5) does not correspond to a real measurement model. It is
just a multivariate, multi - time generating function for the Markov process. In
principle, this could be used in order to (approximately) recover the multivariate
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distribution of arbitrary functions of the process using e.g. saddle - point meth-
ods. In this contribution, we will use a simpler variational approach, which unlike
the ”standard” variational method (based on the Kullback - Leibler divergence)
yields a lower bound to the free energy − lnZ. Using the convex duality transfor-
mation 1

2σ2 ||a||2 = maxφφφ
{
−σ2

2 ||φφφ||2 +φφφ>a)
}
. to represent (4) and exchanging

the max with the expectation in (3) yields the bound − lnZ ≥ max{φφφ}K
k=1

F (φφφ)
where

F (φφφ) = −σ
2

2

∑
k

||φφφk||2+
∑
k

φφφ>k y−lnE

[
exp

(∑
k

φφφ>k L(n(tk))

)
|n(0) = n

]
(9)

For any φφφ, the expectation in the last term is of the form of (5) and can be
computed efficiently. The optimisation w.r.t. to φφφ could be based on a gradient
ascent method. The gradient of the last term

∇φφφk
lnE

[
exp

(∑
l

φφφlL(n(tl)

)]
= 〈L(n(tk))〉 (10)

can be written as an average 〈. . .〉 over the ”posterior” process obtained from the
auxiliary likelihood. For a similar approach to a different model, see [5]. Such a
posterior is also Markov but an inhomogeneous one with a time dependent rate
function that is given by gt(n′|n) = f(n′|n)ψt(n

′)
ψt(n) . In the case of monomolecular

reactions, the posterior process is also monomolecular and we can show that the
prior reaction rates are replaced by

cjk → cjke
bk−bj cj0 → cj0e

−bj c0k → c0ke
bk .

Inserting these rates into (2) and solving this system of linear ODEs would give
an efficient approach for computing the gradient (10).

We expect to have results and comparisons with other methods ready by the
time of the workshop.
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Abstract. We consider the problem of predicting the functions of in-
dividual proteins in protein-protein interaction (PPI) networks. Exist-
ing techniques assume that proteins that are topologically close in the
network tend to have similar functions. We hypothesize that better pre-
dictive accuracy can be obtained by generalizing this assumption. We
call two functions collaborative if proteins with one function often inter-
act with proteins performing the other function. Our hypothesis is that
techniques that extract such function collaboration information from net-
works, and exploit it, can yield better predictions. We propose and evalu-
ate two such techniques. A comparative evaluation on three S. cerevisiae
interaction networks, at different levels of detail, shows that the new
techniques consistently improve over state of the art function prediction
techniques, with improvements in F-measure ranging from 3% to 17%.

1 Methods

The PPI network is represented by protein set P and interaction set E. Each
epq ∈ E shows an interaction between two proteins p ∈ P and q ∈ P . Let F
be the set of all the functions that occur in the PPI network. Each classified
protein p ∈ P is annotated with an |F |-dimensional vector FSp that indicates
the functions of this protein: FSp(fi) is 1 if fi ∈ F is a function of protein p,
and 0 otherwise. FSp can also be seen as the set of all functions fi for which
FSp(fi) = 1. Similarly, the |F |-dimensional vector NBp describes how often
each function occurs in the neighborhood of protein p. NBp(fi) = n means that
among all the proteins that interact with p, n have function fi.

In this section we discuss two methods for the task of function prediction in
PPI networks. They both predict functions based on function collaboration.
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1.1 A Reinforcement Based Function Predictor

In this method, we try to quantify how strongly two functions fi and fj col-
laborate, in the following way. Let FuncColV al(fi, fj) denote the strength of
collaboration between fi and fj . We consider each classified protein p ∈ P in
turn. If function fj occurs in the neighborhood of protein p (i.e., NBp(fj) > 0)
then we increase the collaboration value between function fj and all the functions
in FSp:

∀fi ∈ FSp : FuncColV al(fi, fj)+=
NBp(fj) ∗R

support(fj)

If function fj does not occur in the neighborhood of p (NBp(fj) = 0), we de-
crease the collaboration value between function fj and all the functions belonging
to FSp:

∀fi ∈ FSp : FuncColV al(fi, fj)−=
P

support(fj)

support(fj) is the total number of times that function fj appears on the
side of an edge epq in the network. R and P are ”Reward” and ”Punish” coef-
ficients determined by the user. Next, we determine the candidate functions for
an unclassified protein p and rank them based on how well they collaborate with
the neighborhood of protein p. As an example of a candidate functions strategy,
consider Majority Rule: this method nominates all functions that appear in the
direct neighborhood of the unclassied protein (and among these, will select the
most frequently occurring ones). After selecting candidate functions, we rank
them based on how well they collaborate with the neighborhood of unclassified
protein p. Formula (1) assigns a collaboration score to each candidate function
fc:

Score(fc) =
∑
∀fj∈F

NBp(fj) ∗ FuncColV al(fj , fc) (1)

High score candidate function(s) collaborates better with the neighborhood of
p and are predicted as its functions. We call the above method the “Reinforce-
ment based function predictor”, as it is based on reinforcing collaboration values
between functions as they are observed.

1.2 SOM Based Function Predictor

The second approach presented in this work employs a Self Organizing Map
(SOM) for the task of function prediction in PPI networks. We map the PPI
network to a SOM as follows:

– Input Layer: The number of input neurons equals the number of functions
in the PPI network. So, if inputNeurons is the set of all neurons in the
input layer then |inputNeurons| = |F |. The values we put in the input
layer are extracted from the neighborhood function vector of the protein: if
inputNeuron(i) is the i’th neuron in the input layer then inputNeuron(i) =
NBp(fi).
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– Output Layer: The number of output neurons equals to number of func-
tions in the PPI network (|outputNeurons| = |F |). The values we put in
the output layer are extracted from the function vector of the protein: if
outputNeuron(i) is the i’th neuron in the output layer then outputNeuron(i) =
FSp(fi).

– Network Initialization: Weights of the neurons can be initialized to small
random values; in our implementation we initialized all the weights to zero.

– Adaption: Weights of winner neurons and neurons close to them in the SOM
lattice should be adjusted towards the input vector. The magnitude of the
change decreases with time and with distance from the winner neuron. Here,
we take some new parameters into consideration which are LearningRate(LR),
DecreasingLearningRate(DecLR) and TerminateCriteria(TC) parame-
ters. LR is the change rate of the weights toward the input vector and
DecLR determines the change rate of LR in different iterations. TC is the
criteria in which the learning phase of SOM will terminate. Here, we think
of TC as the minimum amount of change required in one iteration: when
there is less change, the training procedure stops. We use Formula (2) for
updating weights of output neurons.

Wij,New = Wi,j,Current + LR ∗ (NBp(j)−Wi,j,Current) (2)

– Testing: For each protein p in the PPI network that we did not use in the
training phase, we find the Euclidean distance between NBp and the weight
vectors. We select the output neurons which have the shortest Euclidean
distance to NBp and predict them as the functions of protein p. The number
of predicted functions is fixed and determined by the user.

2 Evaluation

We compare our collaboration based methods (i.e., collaborative-RL and SOM)
with similarity based methods (i.e., Majority Rule [3] and Functional Cluster-
ing [2, 1]) on the Krogan, VonMering and DIP-Core datasets, using average F-
measure as the evaluation criterion. We predict 3 functions for each unclassified
protein in all methods and then we compare the F-measure of different methods.
Figure (1), compares SOM and Collaborative-RL (or RL in short) with function
similarity based methods on the Krogan, DIP-Core and VonMering datasets
respectively. We compare the methods on five different function levels. For ex-
ample, two functions 11.02.01 (rRNA synthesis) and 11.02.03 (mRNA synthesis)
are considered the same up to the second function level (i.e., 11.02 = RNA
synthesis), but not on deeper levels. In all three datasets, collaboration based
methods predict functions more accurately than similarity based methods. As we
consider more detailed function levels, the difference between their performance
increases.
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(a) DIP Core (b) Von Mering (c) Korgan

Fig. 1. Compare Collaborative based methods (SOM and RL) with function similarity
based methods (MR and FC) at five different function levels in Krogan, Von Mering and
DIP Core dataset. In all function levels, collaboration based methods predict functions
more accurately than similarity based methods.

3 Conclusion

To our knowledge, this is the first study that considers function collaboration
for the task of function prediction in PPI networks. We view biological process
as an aggregation of each individual protein functions and our hypothesis is
that topologically close proteins have collaborative functions. We proposed two
methods based on this assumption. The first method rewards the collaboration
value of two functions if they interface with each other in two sides of one
interaction and punishes the collaboration value if just one of the functions occurs
on either side of an interaction. At prediction time, this method ranks candidate
functions base on how well they collaborate with the neighborhood of unclassified
protein. The second method uses Self Organizing Map (SOM) for the task of
function prediction. We selected two methods, Majority Rule and Functional
Clustering, as representatives of the similarity based approaches. We compared
our collaboration based methods with these similarity based methods on three
interaction datasets: Krogan, DIP-Core and VonMering. We examined up to
five different function levels and we found classication performance according
to F-measure values indeed improved, sometimes by up to 17 percent, over the
benchmark methods employed.
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Abstract. Qualitative parameter estimation algorithms are a promis-
ing but underdeveloped class of inference methods [1]. They offer the
ability to infer parameters when only qualitative features of the sys-
tem are known or need to be specified. Here we adapt the unscented
Kalman filter for identification of model parameters that give rise to a
desired Lyapunov spectrum. This novel approach extends the reach of
these techniques, allowing detection of the most complex and elusive dy-
namical behaviours. We demonstrate our method on three ODE models,
including a simple model of the Hes1 regulatory system.

Key words: Lyapunov exponents, unscented Kalman filter, qualitative
inference, system design, chaos, oscillations.

1 Introduction

Even very simple dynamical systems can exhibit rich and complex spectrums
of dynamical behaviour. This is perhaps most prominently exemplified by the
logistic map,

xt+1 = λxt(1− xt)
(with 1 < λ ≤ 4) for which, in a landmark paper in 1972 [2], the bewilder-
ing complexity of the possible dynamics was first discussed. From these early
beginnings the notion of chaos in dynamical systems rapidly spread across the
physical, biological and social sciences as a deterministic description of seemingly
random and unpredictable behaviours. An alternative to stochastic interpreta-
tions, chaos theory offers the potential for control, if not long-term predictability,
of these observed phenomena, and with applications to such popular fields as cli-
mate prediction [3], stock market forecasting [4] and medical research [5], the
“butterfly effect” remains an idea that captures the general public’s imagination.

Characterising the dynamics of simple systems such as the logistic map is
a relatively straightforward task. However for more complicated models, find-
ing regimes of complex (or simple) dynamics poses a serious challenge, with
analytical solutions rarely available and simulation-based searches prohibitively
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2 Automated Detection of Chaotic and Oscillatory Regimes

expensive (in terms of computational time required). Here we shall consider
different dynamical systems of the general form

dy(t)
dt

= f(y(t), y0; θ)

where y(t) denotes the state of the system, f is the gradient field characterised by
the vector valued parameter θ, t is time and y0 = y(0) are the initial conditions.
The aim of our analysis is to provide values of θ that lead to certain desired (or
avoid certain undesired) types of dynamical behaviour. To this end we introduce
a powerful and flexible new approach that, given a dynamical system, and a
set of initial guesses for the model parameters, converges to a parameter regime
that exhibits the target qualitative behaviour (e.g. stationary state, limit cycle
or chaos), if it is compatible with the system.

As a tool for fitting models, the approach outlined below has numerous
strengths. Firstly, it provides a method for inferring parameters when, as is
often the case, only qualitative features (eg. stable attraction to steady state)
of the system are known. Secondly, by driving the parameter inference in this
way, parameter identifiability, sloppiness and related concepts may be linked
directly to features of interest, thus informing our intuition about the system
under study. We believe this has huge potential, and for example, could help
in providing treatments for epilepsy, where chaotic regimes are thought to be
desired and regular oscillatory behaviour avoided, and heart arrhythmia, where
the opposite holds [6]. Thirdly, our approach offers an elegant solution to the
notoriously difficult problem of inferring parameters for oscillatory behaviour,
and further, more complex behaviours such as chaos may be treated in the same
way, offering a novel means of chaos control/anti-control for autonomous sys-
tems. Finally, moving away from the traditional aims of parameter inference,
our approach suggests a natural formulation and solution for the problem of
system design, namely (i) we encode the desired dynamical behaviour in a suit-
able manner, and (ii) we search parameter space for parameters that generate
the target dynamics.

It is within this framework that we introduce our method below, and then
present example applications to the classic Lorenz oscillator, the simplest bio-
chemical model capable of a Hopf bifurcation [7, 8] and finally to a model of the
Hes1 gene-regulatory system.

2 Encoding Dynamics through Lyapunov Exponents

A central concept of dynamical systems theory, Lyapunov exponents may be used
to discriminate between qualitatively different orbit types. They may be under-
stood as the rate of exponential divergence of trajectories starting off sufficiently
close to one another, thus determining the long term evolution of initially small
perturbations to the system. Under some widely applicable assumptions [9] , the
Lyapunov exponents, λi, may be derived as the logarithms of the eigenvalues of
the matrix

60 MLSB’10: D. Silk et al.



Automated Detection of Chaotic and Oscillatory Regimes 3

L(y0) = lim
t→∞

(
J(t)JT (t)

)1/2t
, (1)

where J(t) is the Jacobian matrix of the system evaluated at y0.
The Lyapunov exponents, λ1 ≥ λ2 ≥ . . . ≥ λn, encode the qualitative be-

haviour of a system in the following way: For λ1 < 0 the system will attain a
stable stationary state; for λ = 0 the system’s attractor is characterised by stable
oscillations; finally, for λ1 > 0, initially close trajectories will diverge exponen-
tially over time and we refer to this regime as chaotic. So rather than trying to
specify the orbits of a system we will characterise the desired attractor via its
Lyapunov spectrum.

In general, non-linear system equations and the asymptotic nature of L,
preclude the analytic evaluation of expression (1). Instead, numerical approx-
imations of the Lyapunov exponents may be calculated. We here employ the
approach detailed in [10].

3 Filtering as a Design Tool

Unlike in the case for linear systems, where identifying suitable parameters that
produce observed or desired dynamics is trivial, inference for highly non-linear
systems is far from straightforward. Given that exact inferences are prohibitively
expensive for even small to moderate systems a host of different approximation
approaches have been proposed [11–13]. Here we take a Bayesian approach, seek-
ing to approximate the posterior distribution over parameters, conditioned on
the desired behaviour (as specified through the LE or spectrum). We adopt the
perspective that an approximation to the probability distribution is easier to
justify or control than an approximation to the non-linear dynamics ever will be
[14].

In brief, we begin with an initial set of parameters θ0, and apply the unscented
Kalman filter to the following dynamical state space model:

θk+1 = θk + vk

λtarget = g(θk, y0; f) + uk ,

where g is a function of the parameters (here a numerical routine to calculate
the Lyapunov exponents), λtarget is a constant target vector of Lyapunov expo-
nents, vk ∼ N (0, v2) and uk ∼ N (0, u2) are the process and measurement noise,
respectively, y0 denotes the initial conditions and f is the dynamical system
under investigation (with parameters θ).

The approach allows us to infer a set of parameters, θ, that give rise to the
desired behaviour or attractor structure.

Sometimes we may wish to constrain a search to particular regions of param-
eter space. In the context of modelling a real world process, this may be based
upon the physical impossibility of certain parameter combinations (e.g. negative
chemical reaction rates). More generally we may wish to avoid “badly behav-
ing” regions of parameter space where the model is, for example, unbounded.
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Instead of constraining the filter algorithm, we write a new observation function
g∗ = g ◦ p, where p maps the input parameters onto the region of interest. For
example, in order to avoid negative chemical reaction rates, p may output the
absolute value of the parameters (and the unchanged model).

4 Results

In this section we present the results of applying our method to three differ-
ent ordinary differential equation (ODE) systems. For each system we form the
appropriate dynamical state space model, specify a target Lyapunov spectrum,
Λ, and then employ the unscented Kalman filter to home in on suitable param-
eters. In all equations given below, a dot above a variable indicates the time
differential.

Fig. 1. Detecting chaos. Plots showing the estimated parameters for the Lorenz sys-
tem at successive iterations of a single run of the unscented Kalman filter. Snapshots
of the developing attractor are shown above each plot. Colours indicate the sum of
squares error between Λ and the Lyapunov exponents displayed for each parameter
vector. After only 22 iterations, the characteristic “butterfly” attractor emerges. The
final parameters and Lyapunov exponents are σ = 10.2, ρ = 29.2, β = 2.45 and
(0.899, 2.74e− 4,−14.6).
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4.1 The Lorenz Oscillator

Originally used to model weather and climate phenomena, Lorenz’s oscillator
[15] was an early example of how sensitivity to initial conditions can give rise to
unpredictable behaviour.

Defined by the system of ODEs,

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz ,

the model is known to exhibit a chaotic regime with Lyapunov exponents,
Λ∗ = (0.906, 0,−14.57), for parameter vector (σ, ρ, β) = (10, 28, 8/3). As a proof
of concept example, we attempt to infer back these parameters, starting from
different positions in parameter space, by setting our target Lyapunov spectrum
to Λ = Λ∗. If we restrict the parameter search to the region [0, 30]3, we are able
to do this reliably from random starting positions. The parameter trajectories
and evolving attractor of one such inference is shown in Fig. 1, where after
the 100th iteration, the sum of squares error is less than 8e-5. However, without
restrictions, the inference is able to converge to different parameter combinations
that display very similar Lyapunov exponents.

4.2 Detecting Oscillations in two Biological Systems

We now consider two biological examples, searching each for oscillations – a fea-
ture that is ubiquitous in nature, yet elusive to parameter inference techniques.
The first example is a mathematical construct representing the simplest bio-
chemical reaction system that permits a Hopf bifurcation [7, 8]. It is known that
this system, described by,

ẋ = (Ak1 − k4)x− k2xy

ẏ = −k3y + k5z

ż = k4x− k5z ,

where, x, y, z, represent the concentrations of three reactants, ki, are the
reaction rates, and, A, is the fixed concentration of a fourth reactant, displays a
limit cycle for Ak1 = k3 + k4 + k5.

Oscillations in expression levels of the transcription factor Hes1 have been
observed in vitro in mouse cell lines, and reproduced using various modelling
approaches including continuous deterministic delay and discrete stochastic de-
lay models. Here we investigate a simple three component ODE model of the
regulatory dynamics with mRNA transcription modelled by a Hill function, and
given by,
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Ṁ = −kdegM + 1/(1 + (P2/P0)h)

Ṗ1 = −kdegP1 + νM − k1P1

Ṗ2 = −kdegP2 + k1P1 ,

where state variables [M ] = M/V , [P1] = P1/V , [P2] = P2/V , are the
molecular concentrations of Hes1 mRNA, cytoplasmic and nuclear proteins re-
spectively, and V is the assumed constant cell volume. kdeg is the Hes1 protein
degradation rate which we assume to be the same for both cytoplasmic and
nuclear proteins, k1 is the rate of transport of Hes1 protein to the nucleus, P0

is the amount of Hes1 protein in the nucleus when the rate of transcription of
Hes1 mRNA is at half its maximal value, ν is the rate of translation of Hes1
mRNA, and h is the Hill coefficient. For the inference we take, k1, to be the
experimentally determined value of 0.03 min−1 [16]. All other parameters are
left free for the inference.

Fig. 2. Detecting oscillations. Plots showing parameter trajectories for (left) a simple
model of the Hes1 regulatory system and (right) a Hopf bifurcating system through
successive iterations of the unscented Kalman filter. For both systems we are able to
meet the stated design objectives.
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For both biological systems, we are able to find limit cycles within 30 itera-
tions (see Fig. 2). Observe that the inferred parameters for the simple biochem-
ical system obey the mathematically derived relationship between parameters
for oscillations given above. In contrast to the parameters of this system, only
parameter , k1, of the Hes1 regulatory model seems strongly constrained by the
demand for oscillatory behaviour. We are thus able to use the qualitative nature
of our inference to hypothesise that oscillations of Hes1 protein and mRNA levels
are strongly dependent upon maintaining a low rate of transport of Hes1 protein
into the nucleus, and that the dependence on other system parameters is less
strong.
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1 Introduction

Machine learning has become increasingly important in drug discovery where
viable molecular structures are searched or designed for therapeutic efficacy. In
particular, the costly pre-clinical in vitro and in vivo testing of drug candidates
can be focused to the most promising molecules, if accurate in silico models are
available [7]. During the last decade kernel methods [3, 7, 2, 1, 10] have emerged
as an effective way for modelling the activity of candidate drug molecules.

However, classification methods focusing on a single target variable at a time
are not optimally suited to drug screening applications where a large number of
target cell lines are to be handled. In this paper we propose, to our knowledge,
the first multilabel learning approach for molecular classification. Our method
belongs to the structured output prediction family [6, 8, 4, 5], where graphical
models and kernels have been successfully married in recent years. In our ap-
proach, the drug targets (cancer cell lines) are organized in a network, drug
molecules are represented by kernels and discriminative max-margin training is
used to learn the parameters. We demonstrate the benefits of the multilabel
classification approach on a dataset of 60 cancer cell lines and 4554 candidate
molecules.

2 MMCRF algorithm

The multilabel classification model used here is an instantiation of the structured
output prediction framework MMCRF of [5, 4] for associative Markov networks.
MMCRF takes as input a kernel matrixK = (k(xi, xj))

m
i,j=1 between the training

patterns, which in our case are potential drug molecules, and a label matrix
Y = (yi)

m
i=1 containing the multilabels yi = (y1, . . . , yk) of the training patterns.

The components yj ∈ {−1,+1} of the multilabel are called microlabels and in
our case correspond to different cancer cell lines. In addition, the algorithm
assumes an associative network G = (V,E) to be given, where node j ∈ V
corresponds to the j’th component of the multilabel and the edges e = (j, j′) ∈ E
correspond to a microlabel dependency structure. A joint feature map ϕe(x,y) =
φ(x) ⊗ ψe(ye) for an edge is composed via tensor product of input φ(x) and
output feature maps ψe(u) = (Ju = (−1,−1)K, . . . , Ju = (1, 1)K)T , containing all
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pairs of an input feature and a labeling for an edge. Corresponding weights
are denoted by we. The parameters are learned by maximizing the minimum
loss-scaled margin between the correct training examples (xi,yi) and incorrect
pseudo-examples (xi,y),y 6= yi (c.f [5, 4]):

minimize
w

1
2
||w||2 + C

m∑
i=1

ξi (1)

s.t. wTϕ(xi,yi)−wTϕ(xi,y)) ≥ `(yi,y)− ξi,
for all i and y,

where `(yi,y) denotes the Hamming loss between multilabels, and ξi denotes
slack allotted to example xi. The MMCRF algorithm uses kernels to represent
high-dimensional inputs, and optimizes the model in the so called marginal dual
form that gives a polynomial-size of the optimization problem. Efficient opti-
mization is achieved via the conditional gradient algorithm with feasible ascent
directions found by loopy belief propagation over the Markov network G [5].

3 Experiments

We present comparison between the MMCRF multilabel classification model and
the support vector machine (SVM) predicting each cell line in isolation, which
is considered state of the art.

Data and preprocessing. We use the NCI-Cancer dataset obtained through Pub-
Chem Bioassay1 [9] data repository. The dataset contains bioactivity information
of large number of molecules against 60 human cancer cell lines in 9 different
tissue types. For each molecule tested against a certain cell line, the dataset
provides a bioactivity outcome that we use as the classes (active, inactive). The
dataset used here contains 4554 molecules.

Kernel of drug molecules. Based on preliminary studies, we decided to use the
Tanimoto kernel [3]

k(fp1, fp2) =
Nfp1,fp2

Nfp1 +Nfp2 −Nfp1,fp2
,

that is computed from two molecule fingerprints (pre-defined molecule substruc-
ture features) by checking the fraction of features that occur in both fingerprints
of all features. Above, Nfp1 is the number of 1-bits in fingerprint fp1, Nfp2 is
the number of 1-bits in fingerprint fp2, and Nfp1,fp2 is the number of 1-bits in
both of the fingerprints.

1 http://pubchem.ncbi.nlm.nih.gov
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Fig. 1. Network constructed for cell lines (left) and the multilabel distribution of
molecules (right).

Network for cell lines required by MMCRF is constructed as follows. Each node
corresponds to a cell line and edges denote potential statistical dependencies.
To extract the edges, we used auxiliary data (RNA radiation microarray data)
available on the cancer cell lines from NCI database2. We built a correlation
matrix betwen the pairs of cell lines, and extracted the edges by finding the
minimum spanning tree of maximum weight from the correlation matrix of cell
lines. The resulting network is shown in Figure 1, left.

Results. The label distribution of the dataset (Figure 1, right) turned out to
be very skewed: over half of the molecules are inactive against all cell lines and
the average number of active cell lines per molecule is small. Because of this
skewness, we use F1 score (harmonic mean of precision and recall) instead of
accuracy to compare the methods. From a single matrix of predictions Ŷ , F1
computed from one column gives a score for each cell line, F1 computed from
a single row gives a score for each molecule. We used 5-fold cross-validation to
evaluate the models’ performance.

Figure 2 on the left shows the F1 score of MMCRF versus SVM for each
cell line. A sign test shows a statistically significant difference (p=0.009). On
the right, the F1 scores of different molecules are grouped based on the number
of cell lines they are active against. MMCRF is consistently more accurate for
molecules that are active against many cell lines.

4 Conclusions

We presented a multilabel classification approach to drug activity classification
using the Max-Margin Conditional Random Field (MMCRF) algorithm. By uti-
lizing the statistical dependencies between the cell lines, the MMCRF approach
2 http://discover.nci.nih.gov/cellminer/home.do
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Fig. 2. MMCRF against SVM F1 score for each cell line (left) and average F1 score of
molecules grouped by the number of active cell lines (right).

is able to significantly outperform SVM on a dataset comprising of a large set
of cancer cell lines.
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Abstract. We use logic-based machine learning to distinguish DNA-
binding proteins from non-binding proteins. We combine previously sug-
gested coarse-grained features (such as the dipole moment) with auto-
matically constructed structural (spatial) features. Prediction based only
on structural features already improves on the state-of-the-art predic-
tive accuracies achieved in previous work with coarse-grained features.
Accuracies are further improved when the combination of both feature
categories is used. An important factor contributing to accurate predic-
tion is that structural features are not Boolean but rather interpreted by
counting the number of their occurences in a learning example.

1 Introduction

The process of protein-DNA interaction has been an important subject of recent
bioinformatics research, however, it has not been completely understood yet.
DNA-binding proteins have a vital role in the biological processing of genetic
information like DNA transcription, replication, maintenance and the regula-
tion of gene expression. Several computational approaches have recently been
proposed for the prediction of DNA-binding function from protein structure.

Stawiski et al. investigated positively charged patches on the surface of DNA-
binding proteins. They used a neural network with 12 features like patch size,
hydrogen-bonding potential, the fraction of evolutionarily conserved positively
charged residues and other properties of the protein [1]. Ahmad and Sarai trained
a neural network based on the net charge and the electric dipole and quadrupole
moments of the protein [2]. Bhardwaj et al. examined the sizes of positively
charged patches on the surface of DNA-binding proteins. They trained a sup-
port vector machine classifier using the protein’s overall charge and its overall
and surface amino acid composition [3]. Szilágyi and Skolnick created a logistic
regression classifier based on the amino acid composition, the asymmetry of the
spatial distribution of specific residues and the dipole moment of the protein [4].

In the present work, we combine two categories of features to predict the
DNA-binding function of proteins. The first category contains the above men-
tioned coarse-grained features which enabled [4] to achieve state-of-the-art pre-
dictive accuracies. The second category contains structural features represent-
ing characteristic spatial patterns in the unbound conformations of the protein
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residues. These features are formally described in first-order logic [5] and auto-
matically discovered by our algorithm [7].

Nassif et al. [6] have previously used a first-order logic based approach in a
similar context, in particular to classify hexose-binding proteins. The main differ-
ences of our approach from [6] are as follows. First, our fast feature-construction
algorithm [7] enables us to produce features by inspecting much larger structures
(up to tens of thousands of entries in a learning example) than those considered
in [6] using the standard learning system Aleph. Second, our structural fea-
tures acquire values equal to the number of occurrences of the corresponding
spatial patterns, whereas [6] only distinguished the presence of a pattern in a
learning example from its absence. Our results indicate that occurrence-counting
indeed substantially lifts predictive accuracy. Third, rather than proposing an
alternative classification method to state-of-the-art approaches, we elaborate its
augmentation by the use of the structural features. Lastly, the approach of [6]
resulted in classifiers that are more easily interpretable than state-of-the-art clas-
sifiers and comparable in predictive accuracy. Here we maintain the interpretabil-
ity advantage but actually improve on the state-of-the-art predictive accuracies
both by a purely structural approach (without the coarse-grained features) and
even more so through the combination of structural and coarse-grained features.

2 Materials and Methods

Data. Both the protein and the DNA can alter their conformation during the
process of binding. This conformational change can involve small changes in
side-chain location, and also local refolding, in case of the proteins. Predicting
DNA-binding propensity from a structural model of a protein makes sense if the
available structure is not a protein-DNA complex, i.e. it does not contain a bound
nucleic acid molecule. We decided to work with a positive data set (UD54) of
54 protein sequences in unbound conformation obtained from [4]. As a negative
data set (NB110) we used a set of 110 non-DNA-binding proteins created by
[2]. From the structural description of each protein we extracted the list of all
contained residues with information on their type and the list of pairwise spatial
distances among all residues. As for the coarse-grained features, we followed [4]
and extracted features indicating the respective proportions of the Arg, Lys,
Asp, Ala and Gly residues, the spatial asymmetry of Arg, Gly, Asn and Ser, and
the dipole moment of the protein.

Method. We experimented with 7 state-of-the-art attribute-value classifier types
listed in Table 1. The attributes correspond to the coarse-grained features as
listed above and to the structural features constructed as follows. The feature
construction method assumes that proteins are described by means of formal-
logic assertions. For example, the assertion res(’1AJY’, r1, ’CYS’) denotes that
the protein 1AJY contains a residue r1, which is a cysteine. Similarly, the as-
sertion dist(r1,r2,10) denotes that the distance between residues r1 and r2 is
(approximately) 10 angstroms. A complete description of a protein is a logical
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conjunction of such statements, pertaining to all involved residues, and their
all pairwise spatial distances that do not exceed 40 Angstroms (computed from
coordinates of alpha carbons). The full description of a real protein corresponds
to a conjunction containing up to tens of thousands of literals.

A feature F is a conjunction of first order literals. For a protein p and a
feature F we define the value of feature F to be the number of groundings
θ such that p |= Fθ. In other words, the value of a feature is the number of
possible ways to match the feature against a given protein. For example, a feature
F = res(P, R, ’CYS’) counts the number of cysteines in a protein P. An example
of a more complicated feature is the following feature

F = res(P,R1,’CYS’), res(P,R2,’HIS’), dist(R1,R2,8)

which counts the number of pairs cystein-histidine, which are 8 angstroms apart
from each other. Once we have a sufficiently rich set of features, we may feed
the features into any attribute-value learning algorithm.A detailed description of
the computational procedures used to accomplish the feature construction task
is beyond the scope of this paper. In brief, we rely on the framework of inductive
logic programming [5]. In particular, we employ our recently published algo-
rithm [7] since it can scale to rather large structures corresponding to proteins,
which would be prohibitively large for mainstream inductive logic programming
algorithms. This feature construction algorithm exhaustively constructs a set of
features which are not redundant, comply with a user-defined language bias and
have frequency higher than a given threshold.

3 Results

As a result of structural pattern searching we obtained about 1500 patterns
present in 54 unbounded DNA-binding proteins. We made two sets of trainings
(accuracies are shown in Tab. 1): i) considering just the occurrence of the struc-
tural patterns - columns marked with (NC), ii) considering also the number of
the occurrence of each pattern - columns marked with (C). We compare classi-
fiers based on our structural patterns (F2) with classifiers based on 10 features
(F1) from Szilágyi et al. [4]. We also trained classifiers based on both our features
and features from Szilágyi et al. (F1+2). As we can see, we get better results
for classifiers considering the number of the occurrence of each pattern. For the
most classifiers the accuracy is higher when they are based on our features than
on features of Szilágyi et al. However, we get the best results with combination of
the two feature-sets. We show here three examples of unbounded DNA-binding
proteins with the residues of the pattern which is the most informative according
to the χ2 criterion (Fig. 1).

4 Conclusion and Future Work

We have improved on the state-of-the-art accuracies in predicting DNA-binding
proteins by combining previously used coarse-grained features with logic-based
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Classifier F1 F2(NC) F1+2(NC) F2(C) F1+2(C)

Linear SVM 84.0 (2) 77.5 (5) 78.1 (4) 83.0 (3) 84.2 (1)
SVM with RBK 81.6 (3) 67.1 (4-5) 67.1 (4-5) 83.0 (2) 85.4 (1)
Simple log. regr. 81.6 (3) 73.9 (5) 78.8 (4) 87.6 (1) 82.3 (2)
L2-regularized log. regr. 84.0 (2) 78.7 (5) 80.5 (4) 82.4 (3) 84.2 (1)
Ada-boost 77.4 (4) 73.2 (5) 83.0 (2) 79.3 (3) 84.7 (1)
Random forest 78.6 (4) 76.8 (5) 83.6 (1) 80.5 (2) 79.9 (3)
J48 decision tree 75.0 (3) 70.7 (4) 75.6 (2) 68.1 (5) 76.2 (1)

Average ranking: 3 4.79 3.07 2.71 1.43

Table 1. Accuracies obtained by stratified 10-fold crossvalidation using features of
Szilágyi et al. (F1), our structural pattern features (F2) and combination of both of
them (F1+2). The numbers in parentheses correspond to ranking w.r.t. the obtained
accuracies.

1CI4 1D9N 1DBQ

Fig. 1. Example proteins containing one discovered pattern shown using the protein
viewer software [8]. Residues assumed by the pattern are indicated.

spatial protein features. It turns out that an important factor contributing to
the high predictive accuracies is that the latter features are not Boolean but
rather are assigned values counting the occurrences of the corresponding spatial
pattern in the example protein. We are currently trying to further improve the
predictions by incorporating further background knowledge.
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1 Introduction

The task of parameter estimation is regularly encountered in the context of con-
structing systems biology models. These models often focus on the dynamics of
biological systems and have the form of ordinary differential equations (ODEs).
The dynamics modeled is typically highly nonlinear and constrained and thus
the corresponding parameter optimization problems are hard for traditional lo-
cal search optimization methods The problem becomes even worse when we
attempt to model the dynamics in an automated fashion, using approaches like
the machine learning approach of equation discovery [3], which consider both dif-
ferent equation structures and different parameter values. The effectiveness and
efficiency of the parameter optimization method used then becomes paramount.

In this context, we investigate the effectiveness and efficiency of different op-
timization methods for the task of estimating the parameters of ODE models
in systems biology. We consider three optimization methods: the local search
method Algorithm 717(ALG717) [1] and two meta-heuristic approaches: Differ-
ential Evolution (DE) [5] and Differential Ant-Stygmergy Algorithm (DASA)
[4]. We compare them on the parameter estimation task in a nonlinear dynamic
model of an important endocytotic regulatory system that switches between
cargo transport and maturation in early, respectively late endosomes [2]. Both
artificial and real data are used in the comparison, which shows that the recent
DASA approach is the method of choice: It is both effective (in terms of the
quality of the solutions) and efficient (in terms of the speed of convergence).

2 Materials

The Endocytosis Model. The model we study captures the cellular mech-
anisms of endosome maturation and cargo transport. It is based on the inter-
actions of proteins from the Rab5 and Rab7 domains. The theoretical and ex-
perimental approach undertaken to model the endocytosis rely on the mutually
exclusiveness of the Rab5 and Rab7 domains. It has been shown that a cut-out
switch model best fits the biological observations [2].

The model is defined by four ODEs and 18 kinetic parameters, describing the
behavior of four variables (species), that is the active (GTP-bound) and inactive
(GDP-bound) forms of the Rab5 and Rab7 proteins. The corresponding variables
are r5 (Rab5-GDP), R5 (Rab5-GTP), r7 (Rab7-GDP), and R7 (Rab7-GTP). The
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ODEs are given below, where v1, . . . , v10 denote different biochemical reactions
in which the observed Rab5 and Rab7 proteins take part, while c1, . . . , c18 are
the kinetic rates that are to be estimated.

v1 = c1 v2 = c2 r5 t
(100+t)(1+e(c3−R5) c4 )

d
dtr5 = v1 + v7 + v9 − v2 − v3

v3 = c5 r5 v4 = c6
d
dtR5 = v2 − v7 − v3

v5 = c7 r7 R
c8
7

c9+R
c8
7

v6 = c10 r7
1+e(c11−R5) c12

d
dtr7 = v4 + v10 − v5 − v6 − v7

v7 = c13 R5
1+e(c14−R7) c15

v8 = c16 r7
d
dtR7 = v5 + v6 − v10

v9 = c17 R5 v10 = c18 R7

The above system is not completely observed in the available measurements:
These represent the overall concentration of the two Rab proteins, i.e., the sums
of the active and passive form of the Rab5 and Rab7 proteins: Ŷ1(t) = r5(t) +
R5(t) and Ŷ2(t) = r7(t) + R7(t).

The Data. Artificial (pseudo-experimental) data were generated by simu-
lating the model for 2 782 time points inside the interval [0, 1 600]sec with the
parameters values and initial conditions suggested by Del Conte-Zerial et al. [2].

Unlike real-experimental data, the simulated data are exact, i.e., contain
no noise. To be more realistic, we also added normal Gaussian noise (N(0, 1))
to the data: The noise was added relatively to the exact data in a quantity
defined by the percentage factor s (s = 20%): Ynoisy = Y (1 + s N(0, 1)). We
used a resampling procedure for handling the noise, where the “true” model
measurements were taken as the mean value calculated from 10 different values
of the observed output Ynoisy.

We also used real time-course data [2], measured at 10 571 time points in the
interval [−5, 330]sec from several independent experiments, three for Rab5 (23
endosomes) and one for Rab7 (15 endosomes). As explained in the original study
[2], the data were shifted in time so that (Rab5-to-Rab7) conversion events were
synchronized around the time point 0, which explains the negative time points
in the observed interval. The data were averaged across all tracked time courses
and normalized over the range of measured values.

3 Methods

This section describes the optimization problem addressed in parameter estima-
tion of the described model, the optimization methods used and the setup of the
experiments investigating the relative performance of the optimization methods.

Problem Statement. The main focus of our work is parameter estimation
within the Rab5-to-Rab7 conversion model. Given the model structure m(c)
(in this case, ODE model) described with a set of adjustable parameters c =
{c1, . . . , cD}, and a set of observation data d, the task of parameter estimation
is to find values for the model parameters so that the model reproduces the
observed data in the best possible way. This is performed by minimizing a cost
function that measures the goodness of fit.
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The parameter estimation problem is a 22-dimensional optimization prob-
lem with ci ∈ (0, 4], 0 ≤ i ≤ 18, and initial conditions of the species taken as
additional parameters to be estimated, ci ∈ (0, 2], 19 ≤ i ≤ 22. Under the as-
sumption of normally distributed and independent observations with constant
variance, this is formulated as a non-linear least-squares problem, where we min-
imize the sum of squared errors between the observed and predicted (simulated)
values of the system outputs.

Parameter Estimation Methods. We use three parameter estimation
methods: one gradient-descent based (ALG717) and two meta-heuristic approaches
(Differential Evolution, DE and Differential Ant-Stigmergy Algorithm, DASA).
The first two are well-known methods, DASA is a recent and promising one.

ALG717 [1] is a set of modules for solving the parameter estimation problem
in non-linear regression models. The algorithm is a variation of the Newton’s
method, which uses a model/trust-region technique for computing trial steps
along with adaptive choice of the Hessian model. Since ALG717 is a local method,
we wrapped it in a loop of restarts with randomly chosen initial points, providing
in some way a simple global search. In the experiments, the number of restarts
was set to 20.000 (25 evaluations/restart) and additionally, the DGLGB module
with user-supplied derivatives of the cost function was used.

DE [5] is a simple and efficient evolutionary population-based heuristic for
numerical optimization, which combines a differential mutation strategy and a
uniform crossover operation over candidate solutions. The parameters of DE were
set as follows [6]: the strategy “DE/rand-to-best/1/exp” was used, population
size was NP = 200, weight factor F = 0.85, and crossover factor CR = 1.0.

DASA [4] is a recent ant-colony optimization method for numerical opti-
mization. Based on a fine-grained discretization of the continuous domain, the
problem is transformed into a graph-search problem. Parameters’ deviations as-
signed to the graph vertices are used to navigate through the search space. Like
DE, DASA setup was also adopted from the study [6], where the number of ants
was set to m = 8, the pheromone evaporation factor to ρ = 0.2, the maximum
parameter precision to ǫ = 10−15, the discrete base to b = 10, the global scale
increase factor to s+ = 0.07, and the global scale decrease factor to s− = 0.02.

Comparison Methodology. We apply the above three methods to parame-
ter estimation in the Rab5-to-Rab7 conversion model described above. As input,
we use both noise-free and noisy artificial data, as well as measurement data.
All parameter estimation experiments were repeated 25 times and limited to
500 000 function evaluations per run.

We compare the methods according to the sum of squared errors (SSE). We
also consider the convergence curves based on the average results over the 25
runs. In addition, we use the root mean squared error (RMSE) of the models
and the Correlation coefficient (R), standardly used to determine how well the
predictive model fits the given data in terms of linear dependence.

4 Results

Experimental results from parameter estimation of the Rab5-to-Rab7 conver-
sion model with ALG717, DE and DASA using pseudo-experimental and real-
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Table 1. Experimental results from parameter estimation of the Rab5-to-Rab7 model

SSE RMSE R2

s [%] alg717 DE DASA alg717 DE DASA alg717 DE DASA

pseudo-experimental data

Best 573.60 122.63 11.99 0.45 0.21 0.07 0.499 0.942 0.993

01) Mean 1105.35 245.12 51.24 0.63 0.29 0.13 0.305 0.867 0.974

Std 243.55 70.43 36.92 0.08 0.04 0.05 0.119 0.048 0.022

Best 984.75 128.68 53.55 0.60 0.22 0.14 0.431 0.923 0.966

202) Mean 1239.02 256.83 81.31 0.67 0.30 0.17 0.296 0.859 0.952

Std 107.44 69.04 25.81 0.03 0.04 0.03 0.113 0.048 0.015

real-experimental data

Best 651.24 59.14 45.72 0.25 0.07 0.07 0.366 0.938 0.952

Mean 800.40 67.68 54.18 0.27 0.08 0.07 0.358 0.930 0.943

Std 71.28 3.88 4.97 0.01 0.00 0.00 0.160 0.004 0.005
1)

optimal case SSE = 0, R2 = 1
2)

optimal SSE = 44.93, R2 = 0.944

experimental data are presented in Table 1. The row Best represents the values
of the measures (SSE, RMSE and R2) for the best solution found with respect
to SSE, while the Mean and Std rows outline the average value and standard
deviation of the corresponding measures over all 25 runs.

Note that in the case of noise the optimum is not zero anymore, as given
in Table 1. As the simulated data are artificially generated, including the noise
added in the data, the optimum can be calculated as the sum of squared errors
of the noisy observations with respect to the non-noisy observations.

According to Table 1, DASA is closest to the optimum, as confirmed by
the high correlation in the case of simulated data (non-noisy and noisy). The
simulated reconstruction of the output shows that the best DASA solutions are
better than the one obtained by DE and ALG717. Both DE and DASA outper-
form ALG717 based on the statistics in Table 1: the presence of the measurement
noise does not influence the ALG717 performance in a visible way (ALG717 is
so far from the optimum that noise does not influence the SSE noticeably). A
similar outcome is evident in the case of real data, where DASA and DE are far
better than ALG717. Overall, DASA obtains smaller errors than DE.

The graphs in Figure 1a represent the convergence curves of the algorithms
for the specific dataset, based on the mean of the best value of the cost function
from 25 runs over the number of evaluations. Based on the convergence per-
formance, DE and DASA outperform ALG717 in all cases. When compared to
each other in the case of artificial data (Fig. 1a left) and in the case of real data
(Fig. 1b right), DASA has visibly faster convergence than DE. The convergence
curves on non-noisy artificial data are omitted, as they are quite similar to the
noisy data case.

As our main goal was to reconstruct the dynamic of the Rab5-to-Rab7 con-
version model, we visualized the predicted model output to validate qualitatively
the results from Table 1. Figure 1b gives a comparison of the algorithms on
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a) Convergence curves in case of artificial noisy (left) and real data (right)
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b) Reconstructed rab5+Rab5 based on artificial noisy (left) and real data (right)
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c) Reconstructed rab7+Rab7 based on artificial noisy (left) and real data (right)

Fig. 1. Results from parameter estimation in the Rab5-to-Rab7 conversion model on
a) convergence performance; b) & c) reconstructed model outputs using the best esti-
mates; based on pseudo-experimental data with 20% noise (left) and real data (right).

predicting the behavior of the model output Y1 = r5+R5 with the best estimated
parameters using data perturbed with 20% noise, and real data respectively.
Likewise, Figure 1c visualizes the reconstructed output Y2 = r7 + R7 from the
best run. Since the time scale and concentration scales of both datasets are
different, we scaled the time t in the real case with respect to the artificial case
by t ← (t + 850)× 4 and the outputs by Yi ← (Yi − 10 000)/20 000 + 0.6. It is
evident that there is a very good correlation between the pseudo-experimental
data and the predicted data for DASA and DE. While DE slightly overfits the
simulated noise, DASA is more noise resistant. Moreover, DE and DASA capture
the trend and shape of the real measurements very well, successfully dealing with
the (visible) noise in the real data (Fig. 1b left and Fig. 1c left). The predicted
dynamics in the noise-free data case is quite similar and is not included here.
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Based on the mean (and median) values of SSE, we performed multiple com-
parisons using the Holm test, to prove the statistical significance of the results.
For a 5% significance level, both DE and DASA are significantly better than
ALG717 and there is no significant difference between DE and DASA. However,
DASA converges much faster.

5 Conclusions

We have considered the task of parameter estimation in a practically relevant
model of endocytosis. We have used and compared three different optimiza-
tion methods, one gradient-descent based (ALG717) and two meta-heuristic
approaches, differential evolution (DE) and the differential ant-stigmergy al-
gorithm (DASA). We were especially interested in the performance of the recent
and promising DASA approach.

We evaluated the three approaches on both simulated and measured time-
course data and found that DASA outperforms ALG717, yielding much better
solutions (parameter values). DASA produces slightly better solutions than DE,
but not significantly better: However, it does so with a much faster convergence
rate and is thus overall better than DE. This makes it our best candidate so
far to include as a parameter optimization method within our equation discov-
ery approaches to constructing systems biology models [3], which consider both
different equation structures and different parameter values.

Acknowledgements. The real experimental data (total protein concentra-
tions of Rab5 and Rab7) come from the group of Marino Zerial at the Max-
Planck Institute for Cell Biology and Genetics in Dresden, Germany. Thanks
to Perla Del Conte-Zerial and her coworkers for providing these data and the
cut-out switch model used in this study. We would especially like to to thank
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4. P. Korošec and J. Šilc: High-dimensional real-parameter optimization using the
differential ant-stigmergy algorithm. Int. J. Intell. Comput. Cybernetics, 2(1):34–
51 (2009)

5. R. Storn and K. Price: Differential Evolution – A simple and efficient heuristic for
global optimization over continuous spaces.J. Global Optim., 11:341–359 (1997)
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1 Introduction

Identifying motifs in biological sequences is an important challenge in biology.
Proteins involved in the same biological system or physiological function (e.g.,
immune response, chemo-sensation, secretion, signal transduction,...) are subject
to similar evolutionary and functional pressures that have an outcome at the
protein sequence level. Finding motifs specific to proteins involved in the same
process can help deciphering the determinants of their fate and thus be used in
identifying new candidate proteins involved in important biological systems.

To our knowledge all currently available methods search motifs in protein
sequences at the amino acid level, sometimes allowing degenerate motifs to com-
ply with point variations [1, 2]. However, it is known that conservation of the
three-dimensional structure is more important than conservation of the actual se-
quence for the biological function and proteins that have no detectable sequence
similarity can fold in similar structures. At a given position in the sequence,
the nature and physico-chemical properties of amino acids in protein families is
more conserved than the amino acid itself.

We propose a method that allows to identify emerging motifs based both
on conservation of amino acids and on the physico-chemical properties of these
residues. Given a set of protein sequences known to be involved in a common
biological system (positive set) and a set of protein sequences known not to be
involved in that system (negative set) our method is able to identifiy motifs
that are frequent in positive sequences while infrequent or absent in negative
sequences. The identified motifs can then be used to mine the wealth of protein
data now available, in order to identify new previously uncharacterized proteins
involved in biological processes of importance.

In this work, the biological system of interest is the protein secretion of a
plant parasitic nematode (roundworm). The nematode in question, Meloidogyne
incognita [3], is a major crop devastator, and controlling it has become an im-
portant issue. In this context, it is important to identify the proteins secreted
by the nematode into the plant (e.g. cell-wall degrading enzymes that allow the
parasite to enter the plant).
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2 Identifying Degenerated Amino Acid Patterns

2.1 Formal Task Description

We define the task of identifying degenerated emerging protein motifs as follows:

Given: (1) a set of positive proteins P , and a set of negative proteins N , (2)
two frequency thresholds FP and FN , (3) a set of physico-chemical amino acid
properties C and a partial order � defined on the union of C and the amino
acid alphabet A. For all ca1, ca2 ∈ C ∪ A: ca1 � ca2 if and only if ca1 is more
general than ca2.
Find: the set of all patterns M , using symbols in C∪A, that have freq(M,P ) ≥
FP and freq(M,N) ≤ FN . The function freq(X,Y ) returns the number of
proteins in set Y that contain the pattern X.

2.2 Classification scheme

Several amino acid classifications exist in the literature. In this work, we use
the classification by Russell et al [4]. It describes amino acids according to their
hydrophobicity, size, and polarity, see Fig. 1(a).

(a)

ROOT

polar

charged

positive

R

negative

E

Q

hydrophobic

aromatic

F,Y,W,H

aliphatic

I,L

M,K

small

tiny

A,G,C,S

P,N,D,T,V

(b)

Fig. 1. (a) Venn diagram of amino acid properties [4]. (b) Spanning tree.

2.3 Algorithm

The algorithm we propose is based on the well-known generate-and-test princi-
ple, introduced in the Apriori algorithm [5]. At each iteration, a set of candidates
is generated, whose frequency is tested. Given the partial order mentioned above,
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the search space of all possible patterns is structured as a lattice, with an ar-
tificial root element that denotes the empty pattern. The lattice represents an
ordering relation: a pattern (p1, p2, p3, ..., pn) is more general than another pat-
tern (q1, q2, q3, ..., qm), if and only if n ≤ m and for each pair (pi, qi) it holds
that pi � qi.

In order to conduct the search efficiently, the candidate generation exploits
the antimonotonicity properties of the frequency constraints. This results in the
following rules:

– If for a pattern M it holds that freq(M,P ) ≤ FP , then the pattern does
not need to be specialized, since for all its children C, it will hold that
freq(C,P ) ≤ FP .

– If for a pattern M it holds that freq(M,N) ≤ FN , then for all its children
C, it will hold that freq(C,N) ≤ FN , we do not need to test them.

We have implemented the algorithm using a depth-first search strategy. Es-
sentially, the algorithm looks for those patterns that are frequent in the positive
sequences, and meanwhile checks if they are infrequent in the negative sequences.
We discuss its most important parts.

Candidate generation. In order to perform a complete search, it is important
that each relevant pattern in the lattice is considered, and that no pattern is
considered more than once. To achieve this, our candidate generation method
traverses the lattice from general to specific, and at each step performs two basic
operations to generate new candidates given a pattern:

– add a top-level element of the partial order
– minimally specialize the last element of the pattern

In order to ensure that no pattern is considered more than once, we first construct
a spanning tree out of the partial order DAG (see Fig 1(b)), and specialize the
pattern using this tree.

Candidate pruning and testing. When testing a candidate, it is not nec-
essary to check the complete set of positive sequences, it suffices to check the
sequences containing the parent candidate, and only in the case all parents have
passed the minimal frequency threshold FP . In order to exploit this property,
we have to make sure that all parents have been tested before a pattern is con-
sidered, i.e. the spanning tree of the amino acids and their properties has to
be constructed in a way that, in depth-first traversal, all parents of a node are
visited before the node itself is visited. The tree shown in Fig. 1(b) fulfils this
constraint.

3 Results

We have generated a set of 100 M. incognita proteins, that were experimentally
proven to be secreted into plants. As negative set, we took 130 proteins that
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are conserved in non-parasitic nematodes, i.e. that are unlikely to be involved in
parasitism.

As we are interested in identifying motifs that are specific to secreted pro-
teins, the maximal frequency threshold for the negative set, FN , was set to 0,
i.e., we look for so-called jumping patterns. The minimal frequency threshold for
the positives, FP , was set to 20.

The algorithm has identified 3 motifs:

– (hydrophobic charged polar small hydrophobic small hydrophobic tiny small small hydrophobic)

– (hydrophobic hydrophobic small polar polar hydrophobic T hydrophobic polar small hydropho-

bic hydrophobic)

– (small small small small polar small tiny hydrophobic polar polar hydrophobic small)

Together, these motifs cover 40 of the secreted proteins. Six proteins, includ-
ing 2 plant cell-wall degrading (PCWD) enzymes, contain all 3 motifs. If we
search the complete proteome of M. incognita, consisting of 19212 proteins [3],
for proteins that contain the 3 motifs (assuming that these would be the most
probable of being putative secreted proteins), we obtain a set of 43 proteins that
were not included in the training set. Among these, we observe 4 extra PCWD
enzymes, which have not yet been experimentally shown to be secreted. We are
currently looking into the rest of the set.

4 Conclusions

We have proposed an algorithm for the identification of protein motifs that are
not restricted to a sequence of amino acids, but can involve physico-chemical
amino acid properties. The algorithm uses a traditional generate-and-test ap-
proach, with a specific candidate generation operator and pruning step. The
algorithm was applied to the task of identifying motifs specific to the secreted
proteins of a plant-parasitic nematode, resulting in three degenerate motifs, and
a list of 43 candidate proteins to be tested for their involvedness in parasitism.
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systems biology

Stuart Aitken
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Abstract

Background: Stochastic models are commonly used in systems biology to repre-
sent the interaction of small numbers of molecules, and the discrete states that
a molecule might adopt. The optimisation of complex stochastic models is chal-
lenging as, typically, they cannot be solved analytically.
Results: Nested sampling is an effective method for sampling the posterior dis-
tributions of model parameters. The samples are obtained as a by-product of
calculating the Bayesian evidence. Nested sampling requires a likelihood func-
tion, and, in the context of systems biology, the extent to which the data is
explained by a given set of model parameters can be computing by an approx-
imate log likelihood function derived from a number of Gillespie simulations.
This optimisation strategy is therefore generic, and applicable to kinetic data
and steady-state distributions. We have demonstrated that this approach per-
forms well as an optimiser for a number of systems biology models, including
models of circadian rhythms.
Conclusions: We show that for a range of models, parameters can be optimised,
and their standard deviation estimated, by computing a small number of poste-
rior samples by nested sampling.

Introduction

A number of recent reviews have highlighted the importance of model optimisa-
tion to systems biology [1, 5], and the insights that can be gained by a Bayesian
approach that considers the posterior distributions of parameters. MCMC is a
standard strategy for optimisation and posterior analysis, but suffers from a
number of practical problems. Adaptations of MCMC have been developed in
order to analyse systems biology models [2], and alternatives to MCMC are ex-
amined in [3]. This paper explores the use of nested sampling [4] in systems
modelling.

The nested sampling algorithm

Nested sampling [4] explores the Bayesian evidence, transforming the multi-
dimensional integral for the evidence into a one-dimensional integral over the
prior mass. The sorted likelihood function L(x) is used as an evolving constraint
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A B C

transc = 5.14;
transl = 0.5;
d1 = 1.0;
d2 = 0.25;
M=0;
P=0;
->M,transc;
M->,d1;
M-> M + P,transl;
P->,d2;

Figure 8: A simple stochastic model of transcription and translation.

a=;
b=;
c=;
d=1;
ACTIVE=0;
INACTIVE=1;
MRNA=0;

ACTIVE -> INACTIVE,b;
INACTIVE -> ACTIVE,a;
ACTIVE ->ACTIVE + MRNA ,[min(1,ACTIVE)*c];
MRNA ->,d;

Figure 9: A stochastic model of gene activation and inactivation.
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Fig. 1. A model of transcription and translation. (A) The model in Dizzy syntax.
(B) Analysis of posterior and active samples: values for transc and d1 in the posterior
samples (20 samples:light green; 100 samples: pink) and the active samples (20 samples:
green; 100 samples: red). The trade-off between transc and d1 is apparent. (C) Mean
M (transc/d1) and mean P (transc*transl/d1*d2), colour coding as in (B).

in the generation of a set of objects x, randomly sampled from the prior. (An
object is an array of parameter values.) Given a set of n active objects, the worst
is replaced by a new object, subject to the constraint L(x) >L∗ (where L∗ is the
log likelihood of the worst sample). The new object is discovered by an explo-
ration method that takes one of the remaining n-1 objects as a starting point.
The constraint L∗ is then updated, and the process repeats. Nested sampling
computes the mean and standard deviation for model parameters based on the
set of posterior samples (i.e. those eliminated from the active set). This method
promises to be more efficient than MCMC and to cope better with multi-modal
posteriors. We report novel initial results on the application of nested sampling
to model optimisation in systems biology, and to the optimisation of stochas-
tic models that lack an analytical solution, focusing on the use of the posterior
samples generated.

Model optimisation

A simple model of transcription and translation is defined in Fig. 1A where
mRNA (M) is transcribed and may be degraded, and protein (P) is translated
from mRNA and may be degraded. Samples from the distribution of M and P
form the data to be fitted, and these samples have been designed to have one
known solution. This four parameter optimisation problem permits an informa-
tive analysis of the posterior samples to be made.

From the structure of the model, there is clearly a trade-off between the
rates transc and d1 in defining M. Fig. 1B shows that the posterior and active
samples cluster along the diagonal <M> = transc/d1 = 5.14. Fig. 1C shows
that the mean values of mRNA and protein that can be calculated from the
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samples have a peak log likelihood at <M>=5.14 and <P>=10.28, and that
the posterior and active samples cluster towards the optima. Such analyses have
obvious uses should the posterior have multiple modes.

We are exploring the optimisation of more complex systems biology models
using nested sampling, and in future work we shall consider model comparison
through the Bayesian evidence calculation, and the definition of criteria to assist
modellers with the practical application of the method.
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Abstract. Bayesian methods are more and more widespread in genetic
association studies, both in univariate settings for averaging over effect
strength (i.e. over parameters), and in complex multivariate models for
averaging over relations as well. First we discuss a new impetus for the
Bayesian approach, the analysis of probabilistic data, which will be a
new major challenge in the analysis of rare variants from new genera-
tion sequencing data. Next we discuss a combination of univariate and
multivariate Bayesian methods, namely Bayesian networks, which bal-
ances between performance and computational complexity. We present
results about the performance of this two-step approach using a realistic
genome-wide single-nucleotide polymorphism dataset, identify character-
istic errors and practical thresholds.

1 Introduction

The relative scarcity of the results of genetic association studies (GAS)
prompted many research directions, such as the use of the Bayesian
framework [4, 14]; and the use of complex models, such as Bayesian
networks, which can learn non-transitive(!), multivariate, non-linear rela-
tions between target and explanatory variables, treat multiple targets(!),
and allow scalable multivariate analysis [2]. Because their applicability in
genome-wide association studies is hindered by the high computational
complexity, we implemented a two-phased combined method, in which a
Bayesian univariate method filters the variables for the subsequent deep
analysis for interactions (for the univariate method, see [14]).

2 The Bayesian framework for GAS

Due to its direct semantics, the Bayesian approach has an in-built auto-
mated correction for the multiple testing problem (i.e. the posterior is less
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peaked with increasing model complexity and decreasing sample size, see
Section 4). From another point of view, the Bayesian statistical frame-
work is ideal for trading sample complexity for computational complexity
(i.e. applying computation intensive model-averaging to quantify the suf-
ficiency of the data). Bayesian conditional methods e.g. using logistic
regression or multilayer perceptrons, are widely used in biomedicine and
in GASs (e.g., see [8, 1, 13, 3, 18]). Although the conditional approach is
capable for multivariate analysis and also copes with conditional relevance
and interactions, the model-based approach offers many advantages.

1. Strong relevance. Clear semantics for the explicit, faithful representa-
tion of strongly relevant (e.g. non-transitive) relations.

2. Structure posterior. In case of complete data the parameters can be
analytically marginalized.

3. Independence map and causal structure. It offers a graphical represen-
tation for the interactions and conditional relevance, and optionally
for the causal relations [17, 10].

4. Multi-targets. It is applicable for multiple targets [2].

5. Incomplete data. It offers integrated management of incomplete data
within Bayesian inference.

6. Haplotype level. It can perform inherent haplotype analysis.

7. Prior incorporation. It allows better prior incorporation both at pa-
rameter and structural levels.

8. Post fusion. It offers better semantics for the construction of meta
probabilistic knowledge bases [16].

Another recent motive for the Bayesian approach stems from the attempts
to cope with rare variants by aggregating them w.r.t. a corresponding gene
or pathway (i.e., from prior incorporation). Both nominal and quantita-
tive variables V ′

i can be induced based on the original sets of variables V ,
using deterministic transformations V ′

i = fi(V ). However, typically, there
is a considerable uncertainty over these transformations, and it is more
practical to expect a Bayesian transformation, in which each deterministic
transformation has a prior distribution p(Fi = fi). This implicitly defines
a conditional distribution for stochastic mapping (assuming discrete Fi

for simplicity) pi(v′
i|v) =

∑
fi

p(fi)fi(v). The analysis of corresponding
distribution over possible datasets p(D′

N |DN ) fits to the Bayesian frame-
work in many respects.
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3 Combination of univariate and multivariate methods

Bayesian methods are more and more widespread in genetic association
studies, particularly in genome-wide analysis of single-nucleotide poly-
morphisms (see e.g. [4, 14, 11]). The advantage of this approach is partly
explained by the averaging over effect strength (i.e. over parameters),
however an important open question is the selection of prior, particularly
in the new era of rare variants.

On the other hand the Bayesian framework is popular for complex
multivariate models as well, such as for Bayesian networks. The Bayesian
inference over structural properties of Bayesian networks was proposed
in [5, 6], wich was continued by a series of important extensions [15, 7, 12].
In [2], we introduced the concepts of multitarget relevance, feature aggre-
gation, and scalable multivariate relevance with polynomial cardinality
to bridge the gap between the linearity of the MBM level and the expo-
nentiality of the MBS level.

A straightforward combination consists of a filtering univariate and a
subsequent multivariate method. We examined the relation of priors both
analytically and experimentally.

4 Results

We demonstrate the results on an artificial data set generated as follows:
(1) We simulated a case-control dataset containing 10000 random sam-
ples with HAPGEN [19]. This program can handle markers in LD and
can simulate datasets over large regions, such as whole chromosomes. We
used the publicly available files that contain the haplotypes estimated as
part of the HapMap project, and the estimated fine-scale recombination
map derived from that data (HapMap rel#22 - NCBI Build 36 (dbSNP
b126)). The generated dataset contained 33815 SNPs. By using HAPGEN
we defined a partial disease model as a single disease causing variant, i.e.
except this polymorphism, these SNPs defines the background. (2) As we
reported earlier [2] the Bayesian network based method is capable to dis-
cover complex interactions, such as pure conditional (strong) relevance.
In order to create a realistic disease model we manually created a net-
work containing 9 explanatory variables (SNPs). We used this network
for generating a complementary artificial dataset. (3) We integrated the
two datasets and used the resulting dataset as the input in our analysis.
This final dataset therefore contained 33824 SNPs. This dataset also de-
fines the embedded datasets with sizes 500, 1000, 5000 and 10000. The
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Table 1. (Left:) The Markov Blanket Graph of the outcome (Status) variable. (Middle:)
Sensitivity as a function of sample (rows) and model size (columns) at acceptance threshold
0.5. (Right:) Positive predictive value as a function of sample (rows) and model size (columns)
at acceptance threshold 0.5.

10 20 50 100 200 300
500 0 0 0.1 0.1 0.1 0

1000 0.1 0.1 0.1 0 0.1 0.1
5000 0.3 0.4 0.3 0.3 0.3 0.2

10000 0.5 0.6 0.6 0.6 0.5 0.5

10 20 50 100 200 300
500 0.00 0.00 0.04 0.03 0.05 0.00

1000 0.25 0.20 0.20 0.00 0.10 0.06
5000 0.60 0.50 0.19 0.50 0.60 0.33

10000 0.63 0.60 0.55 0.43 0.38 0.29

generated clinical variable (case-control status) served as the target vari-
able, and the aim of our investigation was to identify all the relevant
variables w.r.t. this target variable. There are 10 SNPs in total that are
relevant, i.e. part of the MBG of the case-control status (see Table 1).
To estimate the univariate and multivariate posteriors of relevance we
investigated the following settings: (1) We used a Bayesian approach [14]
to filter the dataset to 10, 20, 50, 100, 200 and 300 variables. (2) Next,
we applied a DAG-based Markov Chain Monte Carlo method. The length
of the burn-in and MC simulation were 106 and 5 · 106, the probability
of the DAG operators was uniform [9]. The CH parameter prior and the
uniform structure prior were used [6]. The maximum number of parents
was 5. The rate of sensitivity and the positive predictive value at an ac-
ceptance threshold (i.e. the value of MBM probability above which we
accept a factor to be relevant) of 0.5 are reported in the following tables.

The external performance measures such as the sensitivity and the
positive predictive value in Table 1 indicate the expected trends w.r.t.
sample size. There are 4 variables that our method are not able to find in
either of the settings. Variables c and d are pure interaction terms that
have no marginal effect on the target variable, so the univariate filtering
method excludes them on the early stage of the analysis. The loss of h and
i variable can be explained by the very small effect (Odds Ratio below
1.2) they have on the target variable.

5 Conclusion

Probabilistic graphical models are already widely applied tools in expres-
sion data analysis, in pedigree analysis, in linkage and association anal-
ysis. In the paper we presented the learning characteristics of a two-step
Bayesian method in genetic association studies for systematically varying
sample size and number of variables (for availability, see http://mitpc40.mit.bme.hu:8080).
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Abstract. The statistical analysis of rare variants from new genera-
tion sequencing methods has become a central challenge. We discuss the
hypothesis of ”equivalent pathway degrading variants” with similar func-
tional effects, both its single gene aspect arising from the transcription to
post-translation chain, and its multivariate pathway aspect arising from
cascades and modules. We propose a stochastic aggregation for incorpo-
rating uncertain knowledge, and describe and evaluate a method for the
Bayesian analysis of uncertain data using Bayesian networks.

1 Introduction

New generation sequencing methods are rapidly changing the landscape
of the research of common diseases, tumorgenetics, and immunogenetics,
some already advocates the era of the ”common disease-rare variants”
(RV) [6]. However the discovery and use of rare genomic variants with
strong effects became a central challenge.

At first in this paper, we summarize a unified approach to common
and rare variants in common diseases. Second, we catalogue information
sources for the univariate, gene-centered aggregation of variants, start-
ing from transcription regulation to post-translational modifications. We
also overview information sources for the multivariate, gene-gene/protein-
protein associations and pathway based aggregation of variants. Next we
demonstrate a method for the Bayesian analysis of uncertain data in the
haplotype analysis of asthma.

2 Common and rare variants in common disease

After decades of research of rare variants of rare diseases, common vari-
ants (CVs) became central in the research of complex, common diseases.
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The slower-than-expected progress and partial results of the correspond-
ing GWAS line resulted in heavy criticism, e.g. the paper of McClellan
and King concludes the failure of ”the common disease (CD)-common
variant (CV) hypothesis”. Furthermore, it argues for a systems biology
based evaluation of RVs in CDs [6].

To understand the implications of this debate w.r.t. new machine
learning methods it is worthwhile to consider the following two aspects.
The SNP distribution in the human population is as follows: in a 109

human population, with 102 new germline SNPs per person ”every point
mutation compatible with life is likely present”, while for a pair of genomes
CVs give most of the variability. The second such group of findings is that
a CD is typically related to the combination of various degradations of
more pathways, where the degradations of pathways are caused by both
RVs and CVs. In fact, it is probably a tenable hypothesis that the distri-
bution of the effect strength of CVs and RVs are comparable, because the
current CVs are formed mainly e.g. by random drift, and proportionally
there is no difference in coverage and functional role in pathway degrada-
tion. This implies that the majority of variants with strong effect are rare
and we can talk about classes of ”equivalent pathway degrading variants”
.

3 Aggregation of RVs

The weak or non-existing linkage of RVs limits the use of haplotypes or
chromosomal regions for aggregations. However this property also limits
the possibility of the discovery of non-functional associations.

In the univariate, gene-centered approach RVs can be aggregated
along the transcriptional regulations to post-translational modifications
chain as follows: transcription factor binding sites, miRNA binding sites,
splice-regulatory element binding sites, and phosphorylation and glyco-
sylation related variations and conserved regions.

In the multivariate, pathway degrading approach RVs can be aggre-
gated w.r.t. pathway knowledge bases and gene-gene/protein-protein as-
sociations.

In each cases both nominal and quantitative variables V ′
i can be in-

duced based on the original sets of variables V , using deterministic trans-
formations V ′

i = fi(V ). Typically, there is a considerable uncertainty
over these transformations, and it is more practical to expect a Bayesian
transformation, in which each deterministic transformation has a prior
distribution p(Fi = fi). This implicitly defines a conditional distribution
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for stochastic mapping (assuming discrete Fi for simplicity)

pi(v′
i|v) =

∑
fi

p(fi)fi(v), (1)

Note that by incorporating uncertainty over the aggregations, we can
balance the increase of the number of transformed variables.

4 Pre-processing vs post-processing aggregation

Various numerically and statistically motivated transformation techniques
in the data preprocessing phase are abundant, such as for normaliza-
tion, standardization, and dimensionality reduction. These methods can
be very valuable in RV aggregation, although the discrete nature of the
data excludes many standard solutions. However the real challenge is to
incorporate prior knowledge in RV transformation. The incorporation of
such priors in data analysis is already common place, although not in the
data preprocessing phase and not for detecting interactions, but in the
postprocessing phase, such as in the Gene Ontology annotation analysis
or in the Gene Set Enrichment Analysis (for Bayesian aggregation in the
postprocessing phase, see [2]).

5 Analyzing uncertain data

Because of uncertainty in RV transformation and aggregation, the anal-
ysis of uncertain data is a central theme in the analysis of rare variants.
We will concentrate on the Bayesian statistical framework for the analy-
sis, particularly because of its ability to incorporate priors and aggregate
posteriors [2]. Assuming a distribution over possible datasets p(D′

N |DN )
defined by Eq. 1 various approaches are as follows

1. using only the most probable data set,
2. using multiple data sets with high probability,
3. Monte Carlo data-averaging in Bayesian model-averaging.

The Bayesian averaging over model properties α(M) is done using
Metropolis-Hastings algorithms (M-H) [2]. To avoid multiple burn-in in
case of multiple data sets, we can mix data-averaging and model-averaging
in a joint Metropolis-Hastings scheme, in the M-H-within-Gibbs, which
is a hybrid of M-H and Gibbs sampling, the Gibbs sampling steps and
the M-H steps can follow each other successively [3]. The Gibbs sampling
steps can be used to generate uncertain and missing values, then using
the completed data set a structure can be sampled in the M-H step.
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6 Results

We performed transformations in a partial genetic association study in
asthma, both in the gene-centered and in the pathway-centered approach.
Here we illustrate our Bayesian network based methods for the Bayesian
analysis of uncertain data for haplotypes in the gene-centered approach.

Because of computational reasons such separation of blocking and
phasing (haplotype inference [1]), and data analysis is a practical choice
followed in many systems (see e.g. HapScope [5], HAPLOT [4], GEVALT [7]).
We similarly follow this decomposition, in which the biomedical expert
specifies the blocks a priori (corresponding to unrelated chromosomal
regions), then the PHASE method is applied for each block [8] to gen-
erate a maximum a posteriori phasing and the distribution over possible
phased genotyped data, and finally we apply our Bayesian model-based
approach [2].

We applied the MC-DA-BMA method in a genetic association study
in asthma research investigating 56 SNPs, 15 genes in chromosome 11 and
14 (settings: burn–in: 1000000, step: 5000000, 10 random datasets from
phasing distribution).

Table 1. BNF maximum likelihood and the averaged results on chromosome 11 and
14. Where HT is the haplotype

Region Name average variance of
MBM posterior MBM posterior

FRMD6 Start HT 1 0.638754 .0969
FRMD6 Start HT 2 0.723333 .1581

AHNAK HT 1 0.160561 .1368
AHNAK HT 2 0.611516 .0713

7 Conclusions

We focused on the Bayesian statistical framework for the analysis, par-
ticularly because of its ability to incorporate priors and to aggregate pos-
teriors [2]. We summarized various types of aggregations of rare variants,
proposed and implemented a stochastic aggregation scheme, which can
be used both in the preprocessing and postprocessing phases. We imple-
mented various sampling schemes to cope with uncertain data sets using
parallel computing information resources (for availability, see http://mitpc40.mit.bme.hu:8080).
We demonstrated these methods for the Bayesian analysis of uncertain
data in the haplotype analysis of asthma.
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We present a novel method to infer combinatorial regulation of gene expres-
sion by multiple transcription factors in large-scale transcriptional regulatory
networks. The method implements a factorial hidden Markov model with a non-
linear likelihood to represent the interactions between the hidden transcription
factors. We propose a sampling-based inference mechanism as well as an efficient
factorised variational approximation which allows application to genome-wide
examples. We evaluate the method on a number of synthetic and real data sets,
demonstrating the potential insights deriving from understanding combinatorial
effects.
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Abstract. We address the problem of building a signature for hypoxia
from microarray data of heterogeneous neuroblastoma cell lines by means
of `1-`2 regularization with double optimization, and integrating prior
knowledge from the Gene Ontology (GO) repository. While unsuper-
vised analysis highlights a strong signal that completely masks the more
subtle response to hypoxia, a complex mechanisms that plays a crucial
role in tumor progress, a Machine Learning based gene selection proce-
dure applied to the entire transcriptome identified a high-level signature
of 11 probesets discriminating the hypoxic state. Furthermore, we show
that new signatures, with similar discriminatory power to the the high-
level one, can be generated by a prior-knowledge based filtering in which
a much smaller number of probesets, characterizing hypoxia-related bio-
chemical pathways, are analyzed.

Keywords: `1-`2 regularization, prior knowledge, microarray, signature

1 Introduction and Experimental Setting

Machine learning based feature selection techniques have succeeded in analyzing
heterogeneous microarray data from tissue samples. Conversely, analysis of cell
lines in different conditions is conventionally approached with hypothesis testing.
Here we consider a different in in vitro experimental design aimed at mimick-
ing the situation occurring in in vivo samples by means of heterogeneous cell
lines, and show how a machine learning based feature selection approach allows
dealing with heterogeneity. In particular we study the application of `1-`2 regu-
larization as a gene selection technique for detecting the signature characterizing
the transcriptional response of neuroblastoma tumor cell lines to hypoxia, a con-
dition of low oxygen tension that occurs in the tumor microenvironment and is
negatively correlated with the progression of the disease. In order to mimic the
situation occurring in the tumor mass, in which the hypoxia signal is perceived
by cells differing in their genetic makeup, differentiation and progression, a set
of 9 human neuroblastoma cell lines (GI-LI-N, ACN, GI-ME-N, IMR-32, LAN-1,
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SK-N- BE(2)C, SK-N-F1, and SK-N-SH) were cultured in a humidified incuba-
tor containing 20%, and 1% O2 in normoxic and hypoxic condition, respectively.
Microarray gene expressions were measured for 54613 probe sets with Affymetrix
HG-U133 Plus 2.0 GeneChip (data are publicly available on the GEO repository
under the record GSE17714), whereas more details of the experimental setting
as well as the statistical analysis can be found in [6, 7].

2 First order analysis

Analysis by hierarchical, spectral, and k-means clustering or supervised approach
based on t-test analysis divided the cell lines on the basis of genetic differences.
Such result shows that the hypoxic and normoxic statuses, though biologically
different, do not induce a modulation of gene expression comparable in magni-
tude to that induced, for example, by genetic alterations. Therefore, in order to
discriminate the two statuses, one has to resort to more powerful techniques,
i.e multivariate machine learning techniques, capable of identifying more subtle
signals, even when masked by a strong transcriptional response.

3 Machine learning analysis

In order to identify the subtle hypoxia response we employ the `1-`2 regulariza-
tion framework described in [5]. This technique fulfills all the desirable properties
of a variable selection algorithm and is based on supervised learning techniques,
enforcing sparsity by means of the `1-norm penalty.

3.1 The `1-`2 regularization framework

The method is based on the optimization principle presented in [9] and further
developed and studied in [4]. Assume we are given a n× p matrix built with the
gene expression of p genes for n samples, with p >> n, and a vector Y of n binary
labels. We consider a linear model y ∼ xβ, where β = (β1, . . . , βp) is a vector
of gene weights. A classification rule can then be defined by taking sign(xβ). If
β is sparse then some genes will not contribute in building the estimator. The
estimator defined by `1-`2 regularization solves the optimization problem:

argmin
{
‖Xβ − Y ‖2 + τ ‖β‖1 + µ ‖β‖22

}
where the least square error is penalized with the `1 and `2 norm of the weight
vector, and the trade-off between the two terms is controlled by the parameter
µ. The role of the two penalties is different, the `1 term (sum of absolute values)
enforces the solution to be sparse, the `2 term (sum of the squares) preserves
correlation among genes. This approach guarantees consistency of the estimator
[4] and enforces the sparsity of the solution by the `1 term, while preserving
correlation among input variables with the `2term. Differently to [9] we follow
the approach proposed in [5], where the `1-`2 solution, computed through the
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simple iterative soft-thresholding, is followed by a second optimization, namely
regularized least squares (RLS), to estimate the classifier on the selected genes.
The parameter µ, fixed a priori, governs the amount of correlation. By tuning µ
we obtain a one-parameter family of solutions which are equivalent in terms of
prediction accuracy, but differ on the degree of correlation among the selected
features. The training for selection and classification requires the choice of the
regularization parameters for both `1-`2 regularization and RLS, hence model
selection and testing are performed within two nested loops of cross validation
(see [2] for details). In order to assess a common list of probesets, we select the
most stable ones, i.e. the most frequently selected probesets across the lists.

3.2 High-level analysis

When applied to the entire hypoxia data, the `1-`2 regularization distinguishes
the normoxic and hypoxic statuses defining an overall signature composed by
11 stable probesets representing 8 genes modulated by hypoxia, and associated
with a 17% leave-one-out error. The strong discriminative power of the high-
level signature is shown in Figure 3.2 . In order to obtain a 3D representation, the
data submatrix is projected on its 3 principal components, i.e. the components
of maximum variance. It is evident that two classes of normoxic (blue circles)
and hypoxic statuses (red squares) are clearly separated in the multidimensional
space. We conclude that `1-`2 regularization algorithm is able to identify a set
of genes that clearly separated the hypoxic from normoxic cell lines even in the
case of the disturbance generated by the genetic alterations of the cell lines.

Fig. 1. 3-dimensional visualization of the data set restricted to the 11 selected probesets
of the high-level signature. Red squares represent the cell lines in hypoxic status and
the blue circles those in normoxia.
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3.3 Pathway-level analysis
We then applied the `1-`2 regularization framework to subgroups of probesets,
characterizing hypoxia-related biochemical pathways. These groups were ob-
tained from the literature and were divided into three categories: hypoxia related
[8], MYCN related [3], and neuroblastoma related groups [1]. The only classes
associated with a leave one-out error lower than 20% were apoptosis (17%),
glycolysis (11%), and oxidative phosphorylation (11%), all of them belonging
to the hypoxia group. The new signatures highlight 41 probesets that were not
previously included in the high-level signature. Furthermore, the 32 probesets of
the oxidative phosphorylation-signature do not overlap with the high-level sig-
nature, demonstrating that the increased resolution generated by data filtering
allows the identification of previously discarded relevant GO processes.

4 Discussion

Our study demonstrated that the `1-`2 regularization framework outperforms
more conventional approaches allowing the definition of an unbiased and ob-
jective gene expression signature. The obtained model is able to discriminate
between two cell statuses that, albeit biologically very different, do not elicit a
modulation of gene expression comparable in magnitude to that induced by ge-
netic alterations. Furthermore a GO based filtering overcomes the noisy nature of
microarray data and allows generating robust signatures suitable for biomarker
discovery and characterization of complex mechanisms such as hypoxia.
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Discrete statistical models are probably one of the most important tools in
bioinformatics. Learning the model parameters for these models from obser-
vations is commonly done via a maximum likelihood principle. In most cases
however there are many solutions to this problem and only a local maximum
can be found. The Expectation Maximization algorithm is the method of choice
to tackle this problem. A new method is presented that allows to find the global
maximum likelihood estimate. The focus is limited on a specific class of discrete
statistical models. For these models it is shown that the maximum likelihood
estimates correspond with the roots of a multivariate polynomial system. Then,
a new algorithm is presented, set in a linear algebra framework, which allows to
find all these roots by solving a generalized eigenvalue problem.
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1 Introduction

In recent years, there has been a growing interest in identifying complex dy-
namical systems in biochemistry and biology [15]. In this context, Ordinary
Differential Equations (ODEs) have been widely studied for analyzing the dy-
namics of gene regulatory and signaling networks [11, 14]. In the present work,
we consider the problem of estimating parameters and unobserved trajectories in
differential equations from experimental data. Nowadays, parameter estimation
in differential equations is still considered as a challenging problem when the
dynamical system is only partially observed through noisy measurements and
exhibit nonlinear dynamics. This is usually the case in reverse-modeling of reg-
ulatory and signaling networks [2, 16]. Some approaches address the estimation
problem based on a Bayesian estimation of state-space models that integrate the
ODE in the evolution equation. However, they suffer from two drawbacks: first
they largely neglect the role of the initial condition and second, they assume
the gaussianity of the posterior probability distribution of the parameters. In
the present work, we are mainly interested in eliminating the first drawback by
taking into account that the initial condition is a key parameter of the ODE
solution. We propose to provide a proper solution to the ODE by estimating the
parameters and the initial conditions. Another contribution is to improve on the
Bayesian approach derived in [16] and in [21] by a better approximation of the
posterior probability distribution.
We first define the estimation task by introducing the flow of an augmented
ordinary differential equation. At this stage, we propose to address the problem
with a Bayesian approach, and we approximate the posterior probability by a
Population Monte Carlo scheme [7] and [3], consisting in an adaptive selection of
the importance distribution.The non-recursive estimation is then applied on two
typical systems biology models: the α-pinene network [19] and the Repressilator
network [8].

2 Flow of an ODE and learning of initial conditions

We consider a biological dynamical system, for instance a gene regulatory net-
work, modeled by the following ordinary differential equation:

ẋ(t) = f(t, x(t), θ) (1)
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defined on the time interval [0, T ] (T > 0). x(t) is the state vector of dimension d:
in the case of a regulatory network, it corresponds to the vector of the expression
levels of d genes. f is a (time-dependent) vector field from Rd to Rd, indexed
by a parameter θ ∈ Θ ⊂ Rp. The flow of a differential equation is defined as
the function φθ : (t, x0) 7→ φθ (t, x0) which represents the influence of x(0) = x0

on the solution. Now, let us introduce N noisy measurements, yn ∈ Rm, n =
0...N − 1, that are acquired from a smooth observation function h : Rd → Rm

(m ≥ 1) at N times t0 = 0 < t1 < . . . < tN−1 = T :

yn = h(φθ (tn, x0)) + εn (2)

where the noise εn is supposed to be Gaussian and homoscedastic. If we want to
fully identify the ODE, we must estimate both the parameter θ and the initial
condition x(0) so that the solution φθ̂(·, x̂0) of the system fits the observations
y0:N−1 = (y0, . . . , yN−1). When some states are hidden (typically m < d), the
estimation is particularly difficult and the state-space model interpretation of the
couple of equations (1-2) can give efficient algorithms, especially in the Bayesian
setting. Our aim is to modify the iterative approach and to show that there is
a benefit in jointly estimating θ and the initial condition x0 in this framework.
Despite the little interest of x0 in general applications, it is in fact fundamental to
estimate correctly x0 in order to disentangle the influence of the parameter from
the one of the initial value. Therefore, we suppose that the initial condition x0

is unknown, so that we are also interested in its estimation. Finally, we want to
estimate the augmented initial condition z0 = (x0, θ) ∈ Rd+p of the augmented
state ODE model: {

ẋ(t) = f (t, x(t), θ(t))
θ̇(t) = 0

(3)

with initial condition z0 = (x0, θ). The solution is the function t 7→ φ (t, z0) from
[0, T ] to Rp+d.

3 Flow-based Bayesian Estimation and PMC

We consider the Bayesian inference framework for the estimation of the aug-
mented initial condition. We call Flow-based Bayesian Estimation (FBE), the
Bayesian approach that consists in estimating the augmented initial condition.
If εn is Gaussian, the posterior distribution can be written as follows

πN−1(z0) = p(z0|y0:N−1) ∝ exp (−e(y0:N−1, z0))π−1(z0) (4)

where e(y0:N−1, z0) = 1
2σ2

∑N−1
n=0 ‖yn − h(φ(tn, z0))‖2 and π−1 is the prior dis-

tribution. Bayesian inference relies on the computation of a reliable approxima-
tion of πN−1(z0), from which we can derive Bayesian estimators. In non-linear
state-space models, the computation of this posterior probability can be done
efficiently by recursive smoothing algorithms [5]. These classical algorithms are
based on recursive computations of the filtering probabilities p(zn|y0:n) and
several versions do exist for the computation of the smoothing probabilities
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p(zn|y0:N−1). However, in these algorithms, the initial condition is estimated as
an initial state and not as a parameter of the flow. As a consequence, the use of re-
fined smoothing strategies remains problematic and calls for careful adaptations
([13, 10]). Moreover, the smoothed trajectories by smoothing are not solutions of
the ODE; therefore, it might be preferable to turn to a non-recursive estimation
of the (augmented) initial condition based. To test our hypothesis about the
potential interest of a better estimation of the initial conditions in a Bayesian
setting, we need to estimate the posterior distribution probability defined in
(4). Several general simulation methods have been developed such as Markov
Chain Monte Carlo (MCMC), Importance Sampling (IS) and variants [18] are
commonly used and both are well-suited to the Bayesian setting. However, one
difficulty of this Monte Carlo methods is that they can be very (computation-
ally) intensive. A challenging difficulty of ODE learning is that the evaluation of
the likelihood is costly due to the integration of the ODE. This point motivates
us to focus on importance sampling algorithms. Population Monte Carlo (PMC)
is a sequential Monte Carlo method, i.e. it is an iterated Importance Sampling
Resampling algorithm (ISR) which sequentially moves and re-weights a popula-
tion of weighted particles (ξi, ω̃i), i = 1, . . . ,M .
In all generality, a PMC scheme is defined for t = 0, 1, . . . , T and a sequence
of proposal distributions qt defined on (Rd+p) The essential interest of PMC
is to introduce a sequence of proposal distributions that are allowed to depend
on all the past which enables to consider adaptive IS procedure based on the
performance of the previous populations. A simple way to randomly perturb a
population is to add an independent noise to each particle ξi,t−1, i.e. to mod-
ify independently each particle ξi,t = ξi,t−1 + εi,t with εi,t ∼ N(0, Σt) (usually
Σt = σ2

t Id+p). Then, at each iteration t, we have ξi,t ∼ N(ξi,t−1, Σt). Gen-
eral moves from ξi,t−1 to ξi,t are described with a (Markov) transition kernel
Ki,t(ξi,t−1, ·). Through the resampling mechanism, particles moving in good re-
gions are duplicated and particles moving to low credibility regions do vanish
which permits a global amelioration of the population. This evolution rule de-
scribed above is a simple random walk, and the mean size of the jumps is con-
trolled by σt. It is interesting to propose at least several size of jumps by using a
mixture of D Gaussian transition kernels: εi,t ∼

∑D
d=1 αdN(0, Σd,t). With such

a D-kernel, the population is moved at each iteration t at different speed Σd,t
selected with probability αd. We implement an adaptive kernel that changes the
move according to the survival rate of a given move, that can be seen as deter-
mining the weights of the mixture of kernel proposals. This estimation problem
of the weights αd is solved by minimizing a Kullback-Leibler divergence with an
EM-like algorithm [7].
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Abstract. With the availability of large scale expression compendia it becomes 

possible to retrieve genes with an expression profile similar to a set of genes of 

interest (i.e., seed or query genes), in a subset of relevant experiments. To that 

end, a query-based strategy is needed that maximally exploits the coexpression 

behaviour of the seed genes, but that at the same time is robust against the 

presence of noise in the seed set. Therefore, we developed ProBic, a query-

based biclustering method based on Probabilistic Relational Models (PRMs) 

that exploits the use of prior distributions to extract the information contained 

within the seed set. We applied ProBic on an Escherichia coli compendium and 

compared its performance with that of previously published query-based 

biclustering algorithms, QDB and ISA. ProBic is developed in a flexible 

framework, and detects biologically relevant, high quality biclusters that 

maintain relevant seed genes, even in the presence of noise. 

Keywords: Query-based biclustering, gene expression compendia, probabilistic 

relational models (PRM). 

1   Introduction 

With the large body of publicly available gene expression data, compendia are being 

compiled that assess gene expression in a plethora of conditions and perturbations [1]. 

Comparing own experimental data with these large scale gene expression compendia 

allows viewing own findings in a more global cellular context. To this end query-

based biclustering techniques [2-6] can be used that combine gene with condition 

selection to identify genes that are coexpressed with genes of interest (i.e., seed set or 

seed genes). These algorithms do not only differ from each other in their search 

strategy but also in the way they exploit the expression signal embedded in the seed 

genes. Some algorithms only use the mean seed profile to initialize the search [3] 
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while others also impose similarity between the biclusters and seed mean profiles 

during the iterations of the algorithm [5].  

For a user it is important that the obtained query-based biclusters recapitulate as much 

as possible the information from the seed genes, but not at the expense of the quality 

of the obtained bicluster results. However, when seed sets are compiled from the 

output of experimental assays, it can not be guaranteed that all genes within the seed 

will be tightly coexpressed. When in such case relying too heavily on the seed profile 

to steer the biclustering, the results will become deteriorated as the algorithm is not 

able to let the data compensate for a non perfect seed profile. On the other hand when 

not sufficiently exploiting the seed information, the biclustering might miss its 

purpose as the seed genes will be lost. To tune in a flexible way the level to which the 

user wants the seed knowledge to be weighted in the final result we developed a 

query-based biclustering method called ProBic, in the framework of probabilistic 

relational models [7-9]. Seed information is exploited via a Bayesian prior. We 

compared our algorithm with two of the best state-of-the art query-based biclustering 

algorithms on a real case study in Escherichia coli. 

2   Model framework 

An overview of the ProBic probabilistic relational model is shown in Figure 1: it 

contains the classes Gene, Array and Expression. For each class, a set of specific 

gene, array and expression objects exists (denoted by the lowercase letters g, a and e 

respectively). The complete set of genes, array and expression objects that belong to a 

certain class are indicated by uppercase letters G, A and E. For the Gene (Array) class, 

a Boolean attribute Bb indicates whether a gene (array) belongs to a bicluster b or not. 

For each gene (array) object, the gene-bicluster labels g.Bb (over all biclusters b) and 

the array-bicluster labels a.Bb are the hidden variables of the model. Each object e of 

the Expression class has one single numeric attribute e.level that contains the 

expression level for each specific gene and array combination. The array class has an 

additional attribute ID that uniquely identifies each individual array object a. The 

conditional probability distribution P(e.level|e.gene.B,e.array.B,e.array.ID) is 

modeled as a set of Normal distributions, one for each array-bicluster combination. A 

number of marginal distributions P(a.Bb), P(g.Bb) and P(g.B) allow expert knowledge 

to be introduced in the model. To learn the model, we applied a hard-assignment EM 

approach [10]. As an initialization of the hidden variables (the gene to bicluster and 

array to bicluster assignments) a set of seed genes is used. 
 

 

 

3   Results and discussion 

 
We used ProBic to search for genes tightly coexpressed with known regulons, both 

simple and complex, in E. coli [11]. Known regulons were used as seed genes and 

additional genes retrieved in the resulting biclusters were considered potential 

undocumented targets for the regulon’s associated transcription factor(s). We 

120 MLSB’10: L.Cloots et al..



benchmarked our method with other query-based biclustering algorithms for which a 

high performance on real datasets was shown previously, i.e., QDB [5] and ISA [6]. 

To assess the results, we evaluated the expression quality of the obtained biclusters, 

their biological relevance and examined the way the different algorithms coped with 

the seed genes. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: overview of the ProBic model. 

 

3.1 Performance of the algorithms as a function of the seed quality 

 

In case a seed set is informative for the queried expression dataset (meaning that the 

dataset indeed contains additional genes being coexpressed with the seed), all 

algorithms are able to find biclusters that maintain the seed genes or at least part of it 

and include additional genes. For seed sets that are non-informative for the queried 

dataset, ISA has a large number of biclusters that loose their seed genes, whereas both 

ProBic and QDB tend to keep (a part of) the seed genes in their biclusters. Also was 

found that high quality seed sets give high quality bicluster results (i.e., tightly 

coexpressed genes whose profile differs from the noise level). In addition, whereas 

the quality of QDB biclusters depends largely on the quality of the seed set, the 

expression quality of bicluster results of both ProBic and ISA are much less sensitive 

towards quality changes. 

 

3.2 Difference between the algorithms in handling noisy seed genes 

 

To systematically analyze the robustness of the different algorithms against the 

presence of noisy genes in a seed set we designed simulated experiments whereby a 

certain number of random genes was added to five seed sets and assessed to what 

extent the different algorithms were able to remove these noisy seed genes from the 

complete seed set in order to retrieve a bicluster that was centered around the true 

seed genes. From the experiments could be concluded that ProBic is most robust 

against the presence of noisy seed genes. 

 

3.3 Relevance of the obtained biclusters 

 

To assess the biological relevance of the obtained biclusters obtained using the seed 

sets and the extent to which they recapitulated the original regulon from which the 

Query-based Biclustering of Gene Expression Data: MLSB’10 121



seed genes were derived, we calculated functional enrichment and motif enrichment. 

We found that both ISA and ProBic largely outperform QDB at the level of motif 

enrichment and functional overrepresentation. Biclusters retrieved by ISA and ProBic 

show a comparable motif enrichment and a slightly better functional enrichment for 

those derived from ISA than for those obtained by ProBic. 

4   Conclusions 

ProBic is a query-based biclustering algorithm, designed to detect biologically 

relevant, high quality biclusters that retain their seed genes even in the presence of 

noise or when dealing with low quality seeds. In addition, the underlying PRM based 

framework is extendable towards integrating additional data sources such as motif 

information, ChIP-chip information that can further help refining the obtained 

biclusters. 
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Abstract. In this work we use InterPro protein signatures to predict
enzymatic function. We evaluate the method over more than 300,000 pro-
teins (55% enzymes, 45% non-enzymes) for which Swiss-Prot and KEGG
have agreeing Enzyme Commission annotations. We applied multi-label
classi�cation to account for proteins with multiple enzymatic functions
(about 3% of UniProt) using Mulan, a library of algorithms based on the
Weka framework. We achieved > 97% recall, accuracy and precision in
predicting enzymatic classes. To understand the role played by the data
set size, we compared smaller data sets, either random or speci�c to taxo-
nomic domains such as archaea, bacteria, fungi, invertebrates, plants and
vertebrates. We �nd that the success of prediction increases with data set
size. Limiting the data to a particular taxonomic set, while saving compu-
tational time, only covers a reduced set of enzymatic classes and achieves
better accuracy than a random set only if the proteins are grouped by
high level taxonomic domains (archaea, bacteria and eukaria).

1 Background

Manual curation will never complete the functional annotation of all available
proteomes, at the current rate of genome sequencing [2]. A contributing problem
is the annotation of proteins with enzymatic reactions, that is, to assign to each
protein the chemical reactions it is able to perform. We propose and evaluate a
method to automatically assign one or more enzymatic functions to a protein.
InterPro signatures are among the highest contributors to the performance of
protein function prediction methods [7]. InterPro is a database of conserved se-
quence signatures and domains: any sequence can be scanned in silico for the
presence of InterPro signatures, using the InterProScan algorithm. In this work
we aim at predicting the Enzyme Commission (EC) numbers of any sequenced
protein with high accuracy, recall and precision, using exclusively InterPro sig-

natures as protein attributes. Our method di�ers from work such as [4], which
predicts enzyme families with support vector machines, in allowing multi-label

classi�cation, that is, the association of multiple enzymatic functions to each
protein. Our approach is widely applicable, since it exclusively uses information
contained in the protein sequence, as opposed to methods such as [3] which also
require existing or derived structural information. The work closest to ours is
probably [1] where hierarchical classi�cation was applied to about 6000 enzymes,
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obtaining about 85% accuracy in predicting EC numbers. The objective of that
work, though, was to validate a particular algorithm. We used Mulan [8] in-
stead: an open-source library of published multi-label algorithms built on the
Weka framework [10], to make our method independent from a particular al-
gorithm implementation. In addition, we obtained extremely good results (over
97% correct predictions) over a very extensive real-life data set consisting of
about 300,000 manually curated protein entries.
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Fig. 1. Left Figure: The shared protein content of UniProt and KEGG. The circle
represents KEGG; the left rectangle (TrEMBL) plus the right (Swiss-Prot) compose
the UniProt Knowledge Base. The intersection between Swiss-Prot and KEGG has
been expanded to show the distribution of taxonomic groups. For legibility, the areas
in the pseudo Venn diagram are not exactly proportional to the number of proteins.
Right Figure: Cross-evaluation results: comparison between taxonomic and random
sets. The �ve taxonomic sets (triangles) above the dashed 90% mark are, from left to
right: archaea, vertebrates, eukaria, bacteria and Swiss-Prot./KEGG. More details in
Table 1.

2 Method and data sources

ML-kNN [11] had the best prediction results among the algorithms existing in
Mulan version 1.2.0 (data not shown). It was also among the fastest on our data:
about 12 hours per fold of a 10-fold cross-evaluation of 300,000 instances, on a
dedicated machine with 2.00GHz CPU and 2GB RAM. ML-kNN is a multi-label,
lazy-learning approach algorithm derived from the traditional K-Nearest Neigh-
bour. The best choice for the number of neighbours was k=1 (data not shown).
For baseline, we used the Zero Rule algorithm. Each instance in our data repre-
sents a UniProt protein, having as class label one or more Enzyme Commission
(EC) numbers and as attributes the presence of one or more InterPro signatures
(protein domains, catalytic sites, sequence repeats etc.). Only 51% of KEGG
entries and 11% of UniProt entries are annotated with EC numbers, so, in order
to include non-enzymes in our classi�cation task, we interpreted the lack of EC
annotation as lack of enzymatic activity. Hence we assigned a �0.0.0.0� pseudo
EC number to all the KEGG and UniProt entries without EC annotation. In
addition, we included in our data sets incomplete EC classes (such as 1.-.-.- or
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1.2.-.-). The main data set, from now on indicated as 'SwissProt ./ KEGG'
consists of all protein instances 1. having EC annotations agreeing in both Swiss-
Prot and KEGG (an annotation being a couple in the form [UniProt Accession
Number, EC number]) and 2. having at least one InterPro signature. This exten-
sive data set has been submitted to two independent manual curations, in which
none of the authors were involved. The set contains 302,068 distinct UniProt
protein records (166,426 enzymes and 135,642 non enzymes). The protein in-
stances in this data are sparse, having an average of 3.55 InterPro signatures
(attribute values) and 3.97 EC numbers (class labels) per protein. The data
was taken from UniProt Knowledge base release 2010_07 of 15-Jun-2010 (sum
of Swiss-Prot release 2010_07 and TrEMBL release 2010_07), InterPro release
27.0, KEGG release 55.0 (1-Jul-2010) and ExPASy ENZYME database (release
15-Jun-2010). The data was further processed using Ondex [5,6] and MySQL.

Data set Instances
(proteins)

Attributes
(InterPro
signatures)

Class labels
(EC

numbers)

Average
subset

accuracy

Subset
accuracy
Std Dev

Plants 3,222 2,785 611 82.2% 2.8%

Random 3,222 3,650 678 80.9% 4.0%

Invertebrates 4,723 3,886 714 83.6% 3.1%

Random 4,723 4,320 804 83.8% 4.0%

Fungi 7,822 4,088 796 88.2% 2.2%

Random 7,822 5,236 935 88.9% 2.7%

Archaea 12,807 2,596 501 97.6% 0.7%

Random 12,807 6,139 1,069 90.6% 2.5%

Vertebrates 25,903 7,128 1,240 91.2% 0.7%

Random 25,903 7,729 1,316 94.6% 0.9%

Eukaria 41,670 8,576 1,594 91.6% 0.5%

Random 41,670 8,859 1,525 95.7% 0.3%

Bacteria 247,570 6,990 1,340 98.9% 0.1%

Random 247,570 12,425 2,134 97.5% 0.2%

Swiss-Prot./KEGG 302,068 12,696 2,184 97.7% 0.2%

Table 1. Cross-evaluation results by data set size and type (taxonomic or random).
The domain eukaria is composed by fungi, plants, vertebrates and invertebrates. See
also Figure 1.

3 Results and discussion

We submitted the data sets smaller than 40,000 proteins to two rounds of 10-
fold cross evaluation (one round for bigger samples) and we present the average
value of subset accuracy, the strictest measure of prediction success, as it re-
quires the predicted set of class labels to be an exact match of the true set of
labels [9]. The cross evaluation results are presented in Table 1. The total data
set 'SwissProt ./ KEGG' achieves 97.7% ±0.2% subset accuracy (for compar-
ison: 44% ±0.2% subset accuracy with the ZeroR algorithm). The table also
presents sets containing only proteins from a particular taxonomic domain such
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as archaea, bacteria or eukaria, composed by fungi, invertebrates, plants and
vertebrates. As visible in Figure 1, the accuracy of prediction generally increases
when the data set size increases. Also, unexpectedly, taxonomic data sets do
not seem to yield better cross-evaluation accuracy than random sets of the same
size (with the exception of the bacteria and archaea sets), and they also cover a
reduced set of enzymatic functions. In conclusion, the method described can be
applied to any sequenced protein, without need for existing annotation, however,
it works best for proteins having InterPro signatures. To give an indication, 87%
of KEGG proteins and 77% of UniProt (76% of TrEMBL and 95% of Swiss-Prot)
have at least one signature, rising to 85% of the 11 million proteins in UniProt,
if the so-called �not integrated� InterPro signatures were to be included.
LDF is funded by BBSRC Grant BBF5290381 of Centre for Systems Biology Edinburgh
and the University of Newcastle.
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Background: Dynamic Bayesian networks (DBNs) are frequently applied to
the problem of inferring gene regulatory networks from transcriptomic profiles.
However, classical DBNs cannot deal with the heterogeneity that arises if we
investigate the changing gene interactions during morphogenesis and embryo-
genesis. In particular, we are interested in the problem of inferring the gene
regulation networks for the developmental stages of Drosophila melanogaster
from a muscle development gene expression time series.

Aims: We have developed a Bayesian method for inferring heterogeneous
DBNs that improves on the shortcomings of previous approaches. This method
allows us to infer morphogenic transitions and changes in gene regulation, e.g.
during muscle development in Drosophila melanogaster, using time series gene
expression data.

Methods: We extend the method of Lebre (2007) by introducing information
sharing among time series segments. Our method (1) avoids the need for data
discretisation, (2) increases the flexibility over a time-invariant network struc-
ture, (3) avoids over-flexibility and overfitting by introducing a regularisation
scheme and (4) allows all hyperparameters to be inferred from the data via a
consistent Bayesian inference scheme.

Results: We evaluate our method on synthetic transcriptional profiles simu-
lated in silico from a known gold-standard regulatory network, and show that
a significant improvement over the unconstrained method without information
sharing can be achieved. We apply our method to the problem of inferring
the gene regulation networks for the embryo, larva, pupa and adult stages of
Drosophila melanogaster from a muscle development gene expression time se-
ries, inferring both the temporal change points and the network structure. We
note that we get better agreement with the known morphogenic transitions than
alternative published methods. Furthermore, the changes we have detected in the
gene regulatory interactions are consistent with independent findings reported
in the literature.

Conclusions: We have shown that information sharing improves the recon-
struction of regulatory networks from nonstationary gene expression time series,
and that we can retrieve meaningful transitions and regulatory gene interactions.
Consequently, our method represents a useful tool for detecting change points



128

and providing improved insight into time-dependent gene regulatory processes,
e.g. during morphogenesis.
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Abstract. We analyze the impact that methodological and experimen-
tal parameters have on the performance of the Aracne and Keller algo-
rithm for network inference. Focusing on scale free networks, we vary
the size of the network, the amount of data at hand and the data nor-
malization schema applied. In order to provide objective evaluation of
the methods, we focus on synthetic data and we employ the MCC mea-
sure for unbiased scoring of the network reconstruction performance.
Our evaluation indicates the data normalization method applied greatly
influences the performance of the network inference algorithms tested.

1 Introduction

This work focuses on the analysis of two different network reconstruction algo-
rithms quantitatively evaluating the impact that methodological and experimen-
tal parameters have on the inferred network. To provide objective evaluation [4]
of the algorithms here tested, we focus on synthetic networks: taking into ac-
count scale-free graphs [1], we adopt a gene network simulator that has been
recently proposed for the assessment of reverse engineering algorithms [3].

The network inference methods tested are: the Aracne algorithm [4] and the
Keller algorithm [6]. Aracne is a general method based on an information theo-
retic approach able to address a wide range of network deconvolution problems
(from transcriptional to metabolic networks, e.g.: [2, 4]). The Keller algorithm
is a kernel-reweighted logistic regression method that extends the l1-regularized
logistic regression and has been applied to reverse engineer genome-wide interac-
tions taking place during the life cycle of Drosophila melanogaster. It is our plan
to apply these algorithms to time series of genomics and environmental data.

To ease the explanation of the algorithms, without any loss of generality, we
will refer to the nodes of the network also as genes and to their output levels as
expression data.

1.1 Synthetic Networks and Data Generation

We benchmark the two algorithms using synthetic data obtained starting from
an adjacency matrix describing the network topology. The adjacency matrix is
generated by a simple stochastic algorithm modeling a scale-free graph according
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to the Barabasi-Albert model [1]. We are interested in estimating the structures
of interaction between nodes/genes, rather than the detailed strength or the
direction of these interactions. Thus, we consider only discrete and symmetric
adjacency matrices, representing with a value of 1 the presence of a link between
two nodes. A value equal to 0 indicates no interaction.

Given an input adjacency matrix, the network simulator uses fuzzy logic to
represent interactions among the regulators of each gene and adopts differential
equations to generate continuous data. As in [4], we obtain synthetic expression
values of gene n (n = 1, .., N) at timem (m = 1, ..,M) by simulating its dynamics
until the expression value reaches its steady state. Each simulation is randomly
initialized by the simulator, thus each of the M runs stabilizes around a different
value.

1.2 Data Normalization

Although many of the real-world issues [7] in data preprocessing and normal-
ization do not apply here as we deal with synthetic data, we are interested in
verifying how some of the most common (and possibly simple) steps taken to
normalize the data impact the accuracy of the network inference algorithms
considered.

Discretization: taking into account microarray measurements and the various
sources of noise that can be introduced during data acquisition, it is often pre-
ferred to consider only the qualitative level of gene expression rather than its
actual value [6]: gene expression is modeled as either being up-regulated (+1) or
down-regulated (−1) by comparing the given value to a threshold. In this work
we calculate the discrete value of the expression for gene n at each of the M
steps as the sign of the difference of its expression values at step m and step
m− 1.

Rescaling: when a scaling method is applied to the data, it is often assumed that
different sets of intensities differ by a constant global factor [7]. In this work we
test two different recaling methods:

– linear rescaling: each gene expression vector is rescaled linearly between
[−1, 1];

– statistical normalization: each gene expression vector is rescaled such that
its mean value is equal to 0 and the standard deviation equal to 1.

1.3 Network Inference Algorithms

Aracne: this algorithm is a general method able to address a wide range of net-
work deconvolution problems (from transcriptional to metabolic networks). The
adjacency matrix returned by the algorithm is made symmetric and discretized
with values in {0, 1} (discretization is obtained by rounding values bigger than
10−3 to 1).
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Keller: the Keller algorithm is a kernel-reweighted logistic regression method
introduced for the reverse engineering of the dynamic interactions between genes
based on their time series of expression values. Although the algorithm has been
developed to uncover dynamic rewiring of gene transcription networks (e.g.:
dynamic changes in their topology), we consider fixed network topology. The
algorithm returns a symmetric and discrete (with values in {0, 1}) adjacency
matrix – discretization is obtained by rounding values bigger than 10−3 to 1.

2 Experimental Evaluation

Performance Metric: we adopt the Matthews correlation coefficients [5] as met-
ric: this is a balanced measure that takes into account both true/false positives
and true/false negatives. The MCC is in essence a correlation coefficient between
the observed and predicted binary classifications: it returns a value between −1
and +1. A coefficient of +1 represents a perfect prediction, 0 an average random
prediction and −1 an inverse prediction [5].

Performance Evaluation: we are interested in verifying the MCC scores of the
tested algorithms varying the size of the network, the amount of data available
and the method adopted to normalize the data prior to network inference. We
vary one parameter at a time and then measure the performance of the systems
as the mean of ten randomly initialized runs. For each run, the network topol-
ogy is randomly generated with the desired N number of genes, the expression
levels – the data – are (randomly) generated the required number of times (M),
the selected normalization method is applied and the MCC values for the ap-
plied reverse engineering method recorded. The variability of the measurement
is expressed as the standard deviation of the 10 independent runs (Figure 1).

Overall, Figure 1 indicates that the normalization procedure applied to the
data has a big impact on the performance of the two network inference algorio-
thms. When we perform data discretization, the two curves stabilize around a
MCC value of 0.2. Considering both linearly rescaled expression values and stat-
ically normalized values, both the algorithms show MCC curves that stabilize
around MCC = 0.4. On the other hand, increasing the amount of data available
has limited impact to the performance of the two algorithms

3 Conclusions

The evaluation indicates that the performance of the different inference algo-
rithms greatly depend on the data normalization method applied. Both Aracne
and Keller are negatively influenced by the discretization procedures: the relevant
accuracy curves in Figure 1 stabilize around a MCC value of 0.2. In comparison,
the accuracy curves relative to statistic normalization and linear rescaling sat-
urate at a MCC value of 0.4. On the other hand, the amount of data ad hand
has little impact on the MCC scores: the curves stabilize for ratio of time-steps
(M) to network size values above 20%
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Fig. 1. MCC scores of the Aracne and Keller algorithms varying the size of the network,
the amount of data and the normalization method.
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Many modern QSAR/QSPR approaches result in black box models. While
delivering excellent prediction performance, most methods will provide no an-
swer as to why the model predicted a particular label for a certain molecule.
However, sometimes human expert’s intuition and model’s predictions do not
match, because the models training data includes relevant information unknown
to the expert or vice versa.

We introduce a new method that explains predictions of kernel based mod-
els (such as Support Vector Machines or Gaussian Processes) by the means of
calculating and visualizing the most relevant molecules from the training set of
the model. This allows practitioners to understand how each prediction comes
about. If a prediction conflicts with an expert’s intuition, he can examine easily
whether the grounds for the model’s prediction are solid.

The new method was evaluated by a group of 40 people, including experts in
pharmaceutics and chemistry. The participants were asked to evaluate toxicity
predictions made by different models both with and without the explanations
provided by our new method. Considering the explanations led to a statistically
significant improvement of the expert as well as layman users’ ability to identify
reliable predictions.
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Here we study the response of the Arabidopsis thaliana transcriptome to in-
fection by Botrytis cinerea in an attempt to elucidate gene regulatory networks
implicated in the plant defence response. Many of the genes whose mutants show
altered susceptibility to B. cinerea in the literature are transcription factors
(TFs), suggesting the importance of gene regulation in the defence response.
Examples of TF mutants known to cause altered susceptibility include; bos1,
zfar1, wrky70, wrky33, ora59, camta3 and ataf1 [1, 2, 4–7]. In the majority of
cases it is not known how these TFs affect susceptibility.

To understand the resistance mechanisms that these TFs regulate, and to find
novel regulators, we use a combination of machine learning and experimental
techniques to predict and validate gene regulation. This Systems Biology ap-
proach to understanding the plant defence response has already revealed novel
regulators and predicted networks of regulation that are currently being tested
experimentally.

Temporal clustering and network inference are used to interpret time course
data of Arabidopsis gene expression during infection by B. cinerea (Denby et al.,
manuscript in preparation). We employ a temporal clustering approach, TCAP,
that accounts for key temporal features to find novel regulators of the plant de-
fence response [3]. For some of these regulators we show experimental validation
of their role in the defence response. Network inference, rooted in a graphical
models formulation, is used to elucidate regulatory network topology of differ-
entially expressed genes during B. cinerea infection. However, robust inference
is challenging in the present setting. We therefore aid network inference by ex-
ploiting sequence information. Specifically, DNA sequences of the promoters of
co-expressed genes are analysed for known TF binding sites, and specific TF fam-
ilies are found to be at least partly responsible for the observed co-expression.
Network inference is then used to predict the single TFs from these families
that bind to these sequences. Two regulators predicted to regulate groups of
co-expressed genes turn out to have be previously found experimentally to be
important to the defence response.
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Dragi Kocev1, Bernard Ženko1, Petra Paul2, Coenraad Kuijl2,
Jacques Neefjes2, and Sašo Džeroski1
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We address the task of grouping genes resulting in highly similar phenotypes
upon siRNA mediated downregulation. The phenotypes are described by features
extracted from images of the corresponding cellular assays. Both freely available
general-purpose software, such as CellProfiler [4], and custom-made proprietary
software can be used for this purpose. The features capture properties (such as
intensity or texture) of the cells or their parts (nuclei, citoplasm, Golgi apparatus
...) in the images.

Clustering [6] produces partitions of the objects of interest (genes) into
groups that are similar in a given feature space. In the context of the appli-
cation of interest, this is a set of features extracted from the images of cellular
assays. Besides finding clusters, e.g., groups of genes, we also aim to find de-
scriptions/explanations for the clusters. The groups are explained in terms of a
set of descriptors from a separate space, i.e., annotations of genes in terms of,
e.g., the Gene Ontology [2] or the KEGG Pathway Database [5].

The typical approach to the problem at hand is to first cluster the pheno-
types and elucidate the characteristics of the obtained clusters later on. Instead,
we perform so-called constrained clustering, which yields both the clusters and
their symbolic descriptions all in one step. The constrained clustering can be per-
formed by using predictive clustering trees (PCTs) [3, 8, 9, 7], predictive cluster-
ing rules [10, 11] or ensembles of predicitve clustering rules [1]: These exemplify
the paradigm of predictive clustering, which combines clustering and prediction.

In the presentation, we will describe the methods of building predictive clus-
tering trees and ensembles of predictive clustering rules. We will also describe its
application to the analysis of image data resulting from siRNA screens. These
approaches have been used to analyze image data from a siRNA screen designed
to study MHC Class II antigen presentation.

An example predictive clustering tree obtained in this domain is given in
Figure 1. The tree has been produced by clustering phenotypes as described by
13 image features (such as intensity, texture, etc.). The cosine distance/similarity
metric has been used for the clustering.
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The internal nodes of the tree contain GO terms with which the genes are
annotated. The leaves of the tree correspond to the clusters/groups of genes. For
example, one such group (C1) includes the genes involved in the biological pro-
cesses of ’defense response’ (GO0006952) and ’regulation of metabolic processes’
(GO001922).

GO0006952
yes no

GO0019222
yes no

GO0043228
yes no

C1 C2 GO0019220
yes no

GO0005102
yes no

C3 C4 GO0005737
yes no

GO0010033
yes no

C5 C6 C7 C8

Fig. 1. A predictive clustering tree obtained from a siRNA screen for studying the
MHC Class II antigen presentation. The internal nodes of the tree contain GO terms
with which the genes are annotated. Leaves of the tree correspond to clusters of genes.

An example predictive clustering rule obtained in this domain is given in
Table 2. The tree has been produced by clustering phenotypes as described by
6 image features. Feature selection was performed on the GO terms and only
the selected subset of features was used to explain the clusters. The Euclidean
distance measure was used. The cluster contains genes which are involved in
’regulation’ (GO0065007) and in particular ’cellular nucleobase, nucleoside, nu-
cleotide and nucleic acid metabolic process’ (GO0006139).

Table 1. A predictive clustering rule obtained from a siRNA screen for studying the
MHC Class II antigen presentation. The conditions in the antecedent describe the genes
in the group in terms of their GO annotations.

IF GO0006139 = 1 AND

GO0065007 = 1

THEN ClusterD1

In sum, we have applied predictive clustering to data from a siRNA screen
designed to study MHC Class II antigen presentation. As a result of the pre-
dictive clustering process, we obtain clearly defined/described groups of genes,
which yield similar phenotypes upon siRNA mediated downregulation. Groups
of this kind can be used to identify pathways regulating the processes of interest
(such as MHC Class II antigen presentation).
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plained groups of time-course gene expression profiles with predictive clustering
trees. Molecular BioSystems, 6(4):729–740, 2010.

8. Jan Struyf and Sašo Džeroski. Constraint based induction of multi-objective regres-
sion trees. In Proc. of the 4th International Workshop on Knowledge Discovery in
Inductive Databases KDID - LNCS 3933, pages 222–233. Springer, 2006.

9. Celine Vens, Jan Struyf, Leander Schietgat, Sašo Džeroski, and Hendrik Block-
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The purpose of the model selection analysis, also called reverse-engineering,
is to identify equation structures and parameter values that best describe some
given measured signals. Using the techniques based on mode decomposition, this
task can be accomplished by solving systems of simultaneous polynomial equa-
tions (as opposed to minimizing nonlinear functions like in other approaches, e.g.
least-squares optimization) and therefore produces reliable results in predictable
time. Apart from speed, matching of data to model structures in an automated
fashion also has a number of advantages over studying individual models manu-
ally. An important one is that, given a signal, it is not only possible to determine
whether a proposed model structure is consistent with the data, but also to scan
hundreds of alternative models according to similar criteria.

When applied to synthetic data sets, both those generated using ordinary dif-
ferential equations with added noise and those obtained using stochastic meth-
ods, the presented workflow is capable of selecting correct model structures out
of a space of hundreds of possibilities. It also outputs some model structures
that fit the data quite well but do not have a correspondence in the synthetic
system, providing a reminder of the limits of direct model fitting as a means of
network inference.

The automated analysis is also applied to a micro-array dataset on gene
expression oscillations in mouse liver cells under the circadian cycle [Hughes et
al 2009]. There, because the underlying mechanisms are not known, the model
selection procedure can be used to test theoretical models against a number
of alternatives or to determine genes that may be active in a particular role (as
defined by a term in a differential equation) in the expression regulation network.
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Abstract. We propose a novel method for covariance matrix estimation
based on shrinkage with a target inferred from biological background
knowledge using methods of inductive logic programming. We show that
our novel method improves on the state of the art when sample sets
are small and some background knowledge expressed in a subset of first-
order logic is available. As we show in the experiments with genetic data,
this background knowledge can be even only indirectly relevant to the
modeling problem at hand.

1 Introduction

An important problem in modelling of gene expression data is estimation of
large covariance matrices. Only quite recently it has been realized that the vast
amount of structured knowledge available in databases like KEGG [5] could be
used to improve the estimation of covariance matrices. So far, all the approaches
following this idea used biological knowledge only in a restricted way. For exam-
ple in [3], shrinkage targets for covariance matrices have been constructed with
non-diagonal entries being non-zero for genes from the same gene groups. We
introduce a novel method that exploits structured knowledge in a non-trivial
way and improves on a state-of-the-art covariance estimation method.

2 SGLNs: Simple Gaussian Logic Networks

We will be working with existentially quantified conjunctions of first-order logical
atoms (conjunctions), which we will also treat as sets. We say that a conjunction
C θ-subsumes a conjunction D (denoted by C �θ D) iff there is a substitution
θ such that Cθ ⊆ D. For example, if C = a(B,C) and D = a(x, y), b(y, z)
then C �θ D because Cθ ⊆ D for θ = {A/x,B/y}. Next, we describe a frame-
work termed simple gaussian logic networks (SGLNs) which borrows ideas from
Markov logic networks and Bayesian logic programs [4].

Definition 1 (Simple Gaussian Logic Networks). A Simple Gaussian Logic
Network (SGLN) is a triple (G,R,N) where G = (gi) (gaussian atoms) is a list
of ground first-order atoms, R (rules) is a set of conjunctions and N (network)
is a ground conjunction. A normal distribution N(µ,Σ) is said to comply with
a SGLN S = (G,R,N) if for P = (pij) = Σ−1 it holds pij = 0 whenever there
is no rule r ∈ R and substitution θ such that {gi, gj} ⊆ rθ ⊆ N .
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It is well-known [7] that a multivariate normal distribution with covariance ma-
trix Σ and precision matrix P = Σ−1 = (pij) can be viewed as a Markov network
in which there are edges between any two variables (nodes) vi and vj for which
pij 6= 0. Thus, SGLNs define an independence structure over the variables cor-
responding to the gaussian atoms gi.

Example 1. Let us have a SGLN S = (G,R,N) where G = (g(a), g(b), g(c)),
R = {g(X), edge(X,Y ), edge(Y,Z), g(Z)} and N = g(a), g(b), g(c), edge(a, b),
edge(b, c). Then any normal distribution with covariance matrix Σ (below) com-
plies with S.

Σ−1 = P =

x 0 y
0 z 0
y 0 w


We have not explained yet how to obtain a covariance matrix complying to

a given SGLN S and maximizing likelihood on a set of training examples E.
The problem of estimating a covariance matrix with a given pattern of zeros
in its inverse is known as covariance selection [1]. Given an ordinary covariance
matrix estimated from data, one can find the maximum-likelihood estimate with
a prescribed zero-pattern by means of convex optimization. Very often one has
too few data samples compared to the number of variables. In such a case,
it is impossible to estimate the covariance matrix reliably as 1

n−1

∑n
i=1(xi −

x)(xi − x)T . Instead, we have to apply a more advanced method, for example
shrinkage-based estimation [6]. The basic idea of shrinkage is to obtain convex
combinations of high-dimensional and lower dimensional models. The covariance
selection method combined with the shrinkage based estimation of unconstrained
covariance matrices gives us an effective tool for learning with SGLNs. First, we
obtain an estimate of covariance matrix Σ̂ using the shrinkage-based approach.
Next, we use Σ̂ as input together with the zero-pattern given by a given SGLN to
the covariance selection procedure which gives us the estimate of the covariance
matrix complying with the SGLN.

3 Estimating Covariance Matrices using SGLNs

In this section we briefly describe a simple method that uses SGLNs to improve
covariance matrix estimation (Algorithm 1). It turns out that the covariance
matrix obtained from an appropriate SGLN can be a very good shrinkage target.
The rationale behind the SGLN-rule-learning part of the method is as follows.
We assume that there are some rules which capture the dependency structure
of the estimated distribution. First, we create a set of positive examples from
unions of d-neighbourhoods1 of most correlated2 pairs of gaussian literals and
a set of negative examples from the least correlated ones. We can expect that
the rules which θ-subsume many positive examples and few negative examples
would be good rules of the SGLN.
1 the neighbourhoods of depth d in the (hyper)-graph theoretical sense
2 Here, the word correlation refers to partial correlations, i.e. pij/

√
piipjj where pij

are entries of the inverse of the covariance matrix.
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Algorithm 1 CovEstimate:

1: Input: Samples S, Set of gaussian atoms G, Conjunction N ;

2: Σ0 ← Estimate covariance matrix from S using [6]

3: P = (pij)← Σ−1
0 /* P is the so-called precision matrix */

4: PosExs← max {k, b |V |2 c} pairs (i, j), i < j with highest |pij/
√
piipjj |

5: NegExs← max {k, b |V |2 c} pairs (i, j), i < j with lowest |pij/
√
piipjj |

6: PosExs∗, NegExs∗ ← Convert PosExs and NegExs to first-order clauses /*see the main
text*/

7: R←Construct a set of good rules using an ILP algorithm /*see main text*/
8: Σ1 ← Obtain an estimate of covariance matrix from Σ0 complying with (G,R,N)
9: return t ·Σ0 + (1− t) ·Σ1 /* with t selected using internal cross-validation */

Example 2. Let us have the network N from Example 1 and a set of samples
M . Let us suppose that we obtained the following covariance matrix by the
shrinkage-based estimation method applied on samples from M .

Σ̂
−1

=

 1 0 −0.5
0 0.75 0
−0.5 0 1


Now, let us construct the sets of positive and negative examples according to the
recipe described in the preceding paragraphs. We set d = 1. Then E+ = {e1}
where e1 corresponds to pair of gaussian literals g(a), g(c) and e1 = ({g(a),
edge(a, b)} \ {g(b), g(c)}) ∪ ({edge(b, c), g(c)} \ {g(a), g(b)}) = g(a), edge(a, b),
edge(b, c), g(c). Analogically, E− = {e2} where e2 = g(a), g(b). It depends on the
chosen language bias which rules would be induced. For example, if rules were re-
stricted to connected clauses, the correct rule g(X), edge(X,Y ), edge(Y,Z), g(Z)
from Example 1 would be one of them.

4 Experimental Results and Conclusions

In this section we show how SLGNs can be applied to covariance estimation of
gene expression data. We used datasets from GEO database [2], namely GDS1209
and GDS1220. For each dataset, we generated 65 smaller datasets each corre-
sponding to one pathway from KEGG database [5]. For each of these, we created
a network N consisting of relations contained in KEGG, e.g. relation of acti-
vation or phosphorylation among proteins etc. Then we compared the baseline
shrinkage-based method (Shr.) [6] with our novel method (SGLN). SGLN clearly
outperformed the existing method (cf. Table 1). Nevertheless, one could still ar-
gue that we could obtain the same or even better improvement if we replaced
the matrix on line 8 of Algorithm 1 by a matrix obtained with a different zero
pattern which would have the same number K of non-zero elements but these
non-zero elements would correspond to K most correlated pairs of variables. In
other words, one could ask whether the use of background knowledge brings
us any benefits. Therefore we performed experiments also with this suggested
method (Top-K), but again SLGN outperformed it. Using cross-validation, we
measured both likelihood on unseen data and RMSE of estimates of values with
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Table 1. Results on the gene expression datasets. Top: Average ratios of likelihoods
on test data obtained by the different methods (smaller is better). Bottom: Average
ratios of RMSEs on test data obtained by the different methods (smaller is better).
Numbers in parentheses correspond to number of wins/losses/ties.

Dataset L - SGLN x Shr. L - SGLN x Top-K L - Top-K x Shr.
GDS1209 15 0.907 (62/3/0) 0.979 (39/25/1) 0.927 (64/1/0)
GDS1209 39 0.939 (63/2/0) 0.980 (53/12/0) 0.958 (64/1/0)
GDS1220 10 0.937 (64/1/0) 0.963 (55/10/0) 0.974 (54/5/6)
GDS1220 44 0.942 (63/2/0) 0.975 (59/6/0) 0.966 (54/2/9)
Dataset RMSE - SGLN x Shr. RMSE - SGLN x Top-K RMSE Top-K x Shr.
GDS1209 15 0.899 (57/8/0) 0.968 (44/20/1) 0.928 (58/7/0)
GDS1209 39 0.983 (50/15/0) 0.996 (37/28/0) 0.987 (53/12/0)
GDS1220 10 0.983 (52/13/0) 0.991 (49/16/0) 0.991 (51/8/6)
GDS1220 44 0.981 (58/7/0) 0.994 (43/22/0) 0.987 (51/5/9)

a randomly selected half of the variables (genes) set to known values. A one-
sided binomial test (α = 0.05) on the number of wins has shown that SGLN was
always significantly better than Shr. and that in all but two cases SGLN was
also significantly better than Top-K.

In this paper, we have introduced a novel method that is able to exploit
structured background knowledge for estimation of covariance matrices and out-
performs an existing state-of-the-art method. An interesting fact is that even
though most of the background knowledge was not directly related to gene co-
expression as the pathways contain more relations regarding products of the
respective genes, it increased accuracy. It would be therefore interesting to in-
terpret some of the learned rules from the biological point of view.
Acknowledgements: OK has been supported by the Grant Agency of the Czech Technical Univer-
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There is currently a tremendous growth in the amount of life science high
through-put data which has been paralleled by similar growths of electronic com-
munication, economics and social science data. The large amount of data will
represent the start of a golden age for artificial intelligence and in particular
bioinformatics machine learning techniques. Examples of high through-put life
science data are the large number of completely sequenced genomes, 3D pro-
tein structures, DNA chips, and mass spectroscopy data. Large amounts of data
are distributed across many sources over the web, with high degree of semantic
heterogeneity and different levels of quality. These data must be combined with
other data and processed by statistical tools for patterns, similarities, and un-
usual occurrences to be observed. The results of many experiments can be sum-
marised in a large matrix, in which rows represent repetition of the experiment
in different context, and the columns are the output of a single measurement. In
particular genetic network data provide means for adjusting cellular metabolism,
growth, and development to environmental alterations. The molecular commu-
nications generated by genetic networks can be triggered by different nutrients,
ions, drugs and other compounds, but also by physical parameters such as tem-
perature, pressure and pH. Biologists represent biochemical and gene networks
as state transition diagrams with rates on transition. This approach provides an
intuitive and qualitative understanding of the gene/protein interaction networks
underlying basic cell functions through a graphical and database-oriented repre-
sentation of the models. More mathematical approaches focus on modeling the
relationships between biological parameters using a connectivity network, where
nodes are molecules and edges represent weighted ontological/evolutionary con-
nections. Therefore a genetic network can be represented by an adjacency matrix
showing the value for each gene-gene interaction. In a very recent paper, Kouko-
likova et al. [1] has demonstrated the power of the iterative spectral algorithm
proposed by Maslov and Zhang [2] in inferring missing values of protein contact
maps and cytokine networks. While the estimation ability of the method de-
pends considerably on the hidden feature dimension M, there is not yet a solid
theoretical way to determine its value. We propose the use of Bayesian statistics
to automatically determine the most appropriate M value at each iteration of
the learning process [3,4]. As the result, the value of M is changed accordingly
to the amount of information available at each step, and approaches a fixed
value when the predictions start to converge. Conclusions We have developed
a fully-automated Bayesian spectral algorithm which proves useful in estimat-
ing missing data as well as predicting the nature of noise containing within the
investigated system. The evaluation on three different datasets of cytokine net-



148

works, enzyme-ligands, and microarray gene expressions have shown significant
improvement compared to other general and data-specific methods. We show
that the approach is very robust in handling large percentage of missing data
both in terms of accurate prediction and quick convergence rate. We also inves-
tigate the role of nonlinearities and noise in the matching phase (i.e. for example
protein and ligand). In particular, it is shown that nonlinearities appear as noise
when linear investigation tools are used. We introduce the use of the distribution
of data correlations in combination with our Bayesian spectral approach to make
prediction on the noise nature within the investigated systems. A set of different
types of noise is investigated.
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Comparing diffusion and weak noise
approximations for inference in reaction models

Andreas Ruttor, Florian Stimberg, and Manfred Opper

Computer Science, TU Berlin, Germany

1 Inference for reaction systems

The problem of probabilistic inference for stochastic reaction models in systems
biology has attracted considerable interest, see e.g. [1]. A well studied problem
is the limiting case, where the number of molecules in the system is sufficiently
large to allow for a deterministic description of the dynamics by a set of (usually
nonlinear) ordinary differential equations.

Inference becomes far more complicated when fluctuations are relevant. The
dynamics is modelled by a continuous time Markov jump process, which de-
scribes stochastic changes of the number of molecules of a given type due to
the reactions in the system. A simplified modelling of the stochastic dynam-
ics is possible, when molecule numbers are large enough to be approximated
by continuous random variables. A common computational technique for this
limit is the replacement of the discrete jump process by a Markov process with
continuous sample paths, i.e. by a diffusion process. Despite this simplification,
statistical inference using Markov chain Monte Carlo (MCMC) methods is still
computationally demanding [2].

A different approach to probabilistic inference designed for the same range of
problems, where molecule numbers are not too small, has been termed weak noise
approximation in [3] and was motivated by van Kampen’s system size expansion
[4]. It is based on the idea that relative fluctuations of molecule numbers may
not be large in such cases and could—to lowest order—be well approximated
by Gaussian random variables. This method leads to the solution of ordinary
differential equations for the moments of the Gaussians, which can be solved in
times that are usually much smaller than the ones required for Markov chain
Monte Carlo approaches.

Hence, one might ask the question, whether the use of the simpler approach
may lead to dramatically different results. To address this question we compare
the results of the two methods on the well-known Lotka-Volterra model (for a
definition of the reactions and rate constants see [5]). Other models of reaction
systems are currently under investigation.

2 Diffusion approximation and MCMC

The state of reaction models is described by a vector x = (x1, . . . , xM )>, where xi
is the number of molecules of species i. The stochastic dynamics is a Markov jump
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process (MJP) defined by a rate function f (x′|x) which determines the temporal
change of transition probabilities via P (x′, t+∆t|x, t) ' δx′,x +∆t f (x′|x) for
∆t→ 0.

The diffusion approximation to this process is defined by the stochastic dif-
ferential equation dx(t) = f(x)dt + D1/2(x)dw(t), for which the drift vector f
and the diffusion matrix D agree with the first and second jump moments of the
jump process, i.e.

f(x) =
∑
x′ 6=x

f(x′|x)(x′ − x) D(x) =
∑
x′ 6=x

(x′ − x)f(x′|x)(x′ − x)>. (1)

The probability density of time discretised sample paths of the diffusion process
conditioned on noisy observations is given by

p(x0:T |D) ≈ p(x0)
Z

 T−∆t∏
t=0,∆t,...

N (xt+∆t; xt + f(xt)∆t,D(xt))

[ n∏
i=1

N (yi; xti , σ
2)

]
,

which is obtained from an Euler approximation to the SDE and whereN (x;m, v)
is the density at x of a Gaussian with mean m and variance v, D = (y1, . . . , yn)
are the observations, and σ2 is the variance of the observation noise. Samples
from this density can be obtained by Metropolis-Hastings steps (see [2] for de-
tails).

3 Weak noise

The starting point of the weak noise approximation is an exact expression of
the conditional marginal density of the state vector pt(x|D) ∝ pt(x|D<t) rt(x),
which is well known from the theory of hidden Markov models. The first factor
pt(x|D<t) is the conditional distribution of the state based only on the obser-
vations D<t ≡ {yi}ti<t before time t. For times between observations this prob-
ability fulfils the forward Fokker-Planck equation with jump conditions at the
observations. And rt(x) ≡ p(D≥t|θ,xt = x) is the likelihood of future observa-
tions D≥t = {yi}ti≥t conditioned on the present state x(t) = x. The likelihood
of all data is then p(D|θ) =

∑
x p0(x)r0(x), where p0(x) is the distribution of

the initial state. rt fulfils the Kolmogorov backward equation[
∂

∂t
+ f(x, t)>∇+

1
2

Tr(D(x, t)∇>∇)
]
rt(x) = 0 . (2)

The weak noise expansion is based on the assumption that typical state vectors
are close to a nonrandom time dependent state b(t). Therefore one sets x =
b(t) + εu with an expansion parameter ε (which is set later to 1) and also
rescales the noise D → ε2D. An expansion of the backward equation up to
order ε2 yields

rt(x) ∝ exp
[
−1

2
(x− b)>S−1(x− b)

]
, (3)
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where the macroscopic state b and the matrix S satisfy the differential equations

ḃ = f(b) Ṡ = AS + SA> −D(b) (4)

with Aij(t) = ∂xjfi(x)
∣∣
x=b(t)

.
Using a similar expansion for the forward Fokker Planck equation a Gaussian

approximation for pt(x|D) is obtained, where the mean state vector m and the
covariance matrix C evolve according to

ṁ = g(m) Ċ = HC + CH> + D(m) (5)

with Hij(t) = ∂xj
gi(x)

∣∣
x=m(t)

and

g(x, t) ≈ f(x)−D(b(t))S−1(t)(x− b(t)) . (6)

Parameter estimation is based on the total likelihood p(D|θ) of all obser-
vations, which is the result of the backward integration. The expected order of
magnitude of the parameters and other prior knowledge can be described in form
of a prior distribution p(θ). Then approximate marginal posteriors are calculated
from a Laplace approximation of the posterior density p(θ|D) ∝ p(D|θ) p(θ).
Setting F (θ) ≡ − log (p(D|θ) p(θ)), Laplace’s approximation is given by

− log p(θi|D) ≈ F (θi, θ∗\i) + C +
1
2

log
∣∣∣∣∂2F (θi, θ\i)

∂θ2

∣∣∣∣
θ=θ∗

, (7)

where θ∗ denotes the most likely parameters, i.e. θ∗ = arg minθ F (θ), and θ\i all
parameters without θi.

4 Comparison of Weak Noise and MCMC

Figure 1 compares the results of parameter estimation for MCMC sampling based
on the approach of [2] and our weak noise approximation [3, 5]. Both methods
have been implemented in Matlab. Obtaining 500,000 samples (50,000 discarded
as burn-in, thinning factor 100) from MCMC took roughly 80.5 hours on a Intel
Core 2 processor, while the approximate inference algorithm ran only for one
hour. It is clearly visible, that it produces results comparable to those obtained
by MCMC sampling, although it is vastly faster.

Results of state inference using both algorithms are shown in figure 2. Here
the parameters of the model have been fixed to their true values α = 0.05, β =
0.01, γ = 0.05, and δ = 0.01. Obtaining 500,000 samples took 44.5 hours, while it
was possible to calculate the marginal posterior using approximate inference in
less than one minute. However, both results are nearly identical. Consequently,
using the weak noise approximation enables very fast parameter estimation and
state inference without loosing much accuracy.
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Fig. 1. Posterior distributions of the rate constants. Solid blue lines show the results of
the approximation, while the histograms obtained from MCMC are plotted as dashed
black lines. The prior used in both algorithms is denoted by dotted lines.
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Fig. 2. Posterior distributions of the path. Solid blue lines show the results of the
approximation, those obtained from MCMC are plotted as dashed black lines. The
mean is denoted by thick lines, while thin lines surround the 95%-confidence interval.
The true process and the observations taken from it are drawn as a red line and red
crosses, respectively.
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Prediction of catalytic efficiency to discover new
enzymatic activities

Chloé Sarnowski, Pablo Carbonell, Mohamed Elati, Jean-Loup Faulon

ISSB, Genopole, Genopole Campus 1, Genavenir 6, 5 rue Henri Desbruères, 91030
EVRY, France

Abstract. Characterizing the catalytic efficiency of an enzyme for spe-
cific reactions might constitute a useful tool in the prediction of novel en-
zymatic activities. Here, an approach based on the random forest method
is used to predict catalytic efficiency of an enzyme sequence for a partic-
ular reaction. Our efficiency predictor achieves a precision of 88% with a
recall of 84% and an accuracy of 91%. For any given pair formed by an
enzyme sequence and its putative reaction, our tool estimates the cat-
alytic efficiency by applying the random forest method to a selection of
sequence and chemical compounds descriptors. Moreover, we show that
adding additional molecular signatures-based predictions as descriptors
increases the performance of the predictor.

Keywords: random forests, classifiers combination, catalytic efficiency,
enzyme annotation

1 Introduction

Predicting new enzymatic functions for a given enzyme sequence implies the
development of both a reaction predictor and a catalytic efficiency predictor.
Reaction catalytic parameters used in order to estimate efficiency are usually
the Michaelis constant or Km which reflects the affinity of a substrate for an
enzyme and the catalytic constant kcat. The specificity constant or performance
constant (kcat/Km) is often used as a measure of catalytic efficiency to compare
several substrates or reactions catalysed by an enzyme [5] . Currently it has been
not reported a global predictor of catalytic efficiency for a protein sequence con-
cerning a particular reaction. In this study, we present a method for predicting
catalytic efficiency using sequence and chemical compounds descriptors. This
method is based on the random forest algorithm [1]. It has been demonstrated
that the classification method based on random forests achieves good results
with unbalanced data [4]. We employed a classifier combination approach which
improved predictions made from unbalanced data. Performance of our method
leads us to think that it is possible to build a reliable predictor of catalytic effi-
ciency of a sequence for a particular reaction.
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2 Methods

2.1 Dataset from the ECE database

An Enzymatic Catalytic Efficiency (ECE) database was created from the data-
bases KEGG (http://www.genome.jp/kegg) and BRENDA (http://www.brenda-
enzymes.org/) in order to associate sequences with catalytic parameters such as
Km and kcat. The performance constant (kcat/Km) was discretized and used as
a class of catalytic efficiency. To these sequences, characterized by reactions and
parameters, some molecular descriptors of sequence and chemical compounds
were associated. For sequences, the descriptors were physicochemical proper-
ties such as hydrophobicity, length, molecular weight and residue-level proper-
ties such as enrichment in aliphatic, aromatic, polar, etc amino acids. For the
chemical compounds, the descriptors were a quantification of properties of the
molecular structure and physicochemical properties such as solubility, molecular
weight, or chirality.

2.2 Clustering of the dataset to define groups of similar reactions

Reactions in KEGG were clustered into groups of chemical similarity based
on molecular signatures, a two-dimensional molecular descriptor based on the
molecular graph of a molecule [3]. This clustering determines groups of similar
reactions, which were used in order to set the domain of applicability of each
predictor.

2.3 Using random forests for the prediction of catalytic efficiency

The random forests were proposed by Breiman in 2001 [1]. A random forest
is composed of decision trees which can produce a decision with a sample of
descriptors.The random forests are often used with a large unbalanced dataset
with a large number of descriptors. A random tree is used with a random sample
of data and at each division it is a random sample of descriptors that is used.

2.4 Combining classifiers to increase classifier performance

A simple method for combining classifiers was used. Besides the molecular de-
scriptors, the method takes outputs from our previously proposed molecular
signatures-kernel-based predictors of promiscuity [2] and EC number [3] as ad-
ditional input values to the classifier. The rationale is to exploit the classifiers
complementarity and to get a tradeoff between the performance of each other.
For instance, the promiscuity of an enzyme might be a factor tlinked to the
catalytic efficiency.
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3 Results

The random forest classifier parameters were the number of trees and the number
of variables tested at each division. In order to minimize the out of bag (oob)
error1, we chose a number of trees of 20 and we kept the default parameter for
the mtry attribute. The performance of each cluster classifier was evaluated by
10-fold cross-validation. The ROC curve (Fig. 1) shows good performances of
most of the cluster classifiers. We reach an average of precision of 88% with a
recall of 84% and an accuracy of 91%.
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Fig. 1. ROC curve of the catalytic efficiency predictor
trained with nbtree=20 for all the clusters by 10-fold
cross-validation

We compared these performances with the performance of a classifier using bal-
anced datasets in each cluster of reactions. We found that the accuracy was the
same in the two cases (around 0.91). Moreover, we observed an increase in the
performance of the catalytic efficiency predictor by adding molecular signatures-
based predictions as input descriptors (Fig. 2). Finally we compared, by repeat-
ing 10 times a 10-fold cross-validation, our predictor with a classical decision tree
classifier (j48) or a SVM classifier. The results (Fig. 3) showed that the error
rate was lower for the random forests and suggested that this classifier was more
efficient than the others.
1 the prediction error on the data moved away from the learning dataset
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4 Conclusion

We introduced in this study an algorithm based on random forests to predict
catalytic efficiency using sequence and chemical compounds descriptors. The
classifier performance was better than those obtained in other classical classi-
fiers. This better performance shows the reliability of our proposed catalytic
efficiency predictor in order to discover novel catalytic activities for an enzyme
sequence and a putative reaction.
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We propose to use machine learning techniques to infer genetic interactions
in Yeast by integrating various feature sets defined on genes. The approach is
validated using four available genetic interactions maps (E-MAPs) as training
networks.

The inference of the genetic interaction network of an organism is an impor-
tant challenge in systems biology. The knowledge of these interactions is very
useful to understand the functions of the genes and their products. In yeast
S.cerevisiae, interactions subnetworks (E-MAPs) on four subsets of genes have
been measured. For the time being, it remains however impossible to test exper-
imentally the 18 millions potential interactions between the 6000 genes. In this
work, we propose to use computational techniques based on machine learning to
complete the experimentally confirmed interactions.

We proposed several strategies to transform this problem into one or sev-
eral standard classification problems and we exploited two families of supervised
learning algorithms: tree-based ensemble methods and support vector machines.
We considered as inputs various feature sets, including chemo-genomic profiles,
expression data, and morphological data. We validated the approach by using
cross-validation on four available E-MAPs. We experimented with several pro-
tocols, including the completion of missing values in a given E-MAP and the
prediction of interactions in one E-MAP from the others.

Globally, the best results are obtained with support vector machines. Cross-
validation shows that we are able to predict new interactions with a reasonable
accuracy. As expected, predictions of interactions between genes from the train-
ing E-MAPs are more accurate than predictions of interactions between genes
not present in the training set. Some E-MAPs are also much easier to predict
than others. Among input feature sets, the chemo-genomic profiles are the most
predictive followed by the morphological data, while we found that expression
profiles are not informative.

We have mostly focused on the prediction of negative interactions. Positive
interactions are less frequent, which renders their prediction by machine learning
techniques more challenging. We will now focus on these interactions. Future
work will also consider the addition of other input features (e.g., interaction
networks) or further methodological developments. Our ultimate goal is to make
genome-wide predictions with our algorithms and to prioritise these predictions
for an experimental validation.
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All Pairs Similarity Search for Short Reads
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Abstract. We developed a novel method SLIDESORT that enumerates
all similar pairs from a string pool in terms of edit distance. The pro-
posed method is based on a pattern growth algorithm that can effectively
narrow down the search by finding chains of common k-mers. Evaluation
on large-scale short read dataset shows that SLIDESORT was about
10-3000 times faster than other state-of-the-art methods.

1 Introduction

Recent progress in DNA sequencing technologies calls for fast and accurate al-
gorithms that can evaluate sequence similarity for a huge amount of short reads.
Searching similar pairs from a string pool is a fundamental process of de novo
genome assembly, read clustering and other important analyses [4]. In this study,
we designed and implemented an exact algorithm SLIDESORT that solves all
pairs similarity search in terms of edit distance. Namely, given a set of n se-
quences of equal length ℓ, s1, . . . , sn, SLIDESORT finds all pairs whose edit
distance is at most d,

E = {(i, j) | EditDist(si, sj) ≤ d, i < j} . (1)

Basically, similarity search problems are solved by finding a common k-mer and
verifying the match or backtracking in an index structure of suffix array. Either
approaches or a combination of the two approaches do not work well for short
strings with large radius, because k-mer match of short length generates too
many candidate pairs to be verified and the backtracking cost of suffix array
is exponential to d. Using an efficient pattern growth algorithm, SLIDESORT
discovers chains of common k-mers to narrow down the search without using
large memory, and effectively reduces the number of edit distance calculations.
As a result, it scales easily to 10 million sequences and is much faster than seed
matching methods and suffix arrays for short sequences and large radius.

2 Method

Two similar strings share common substrings in series. Therefore, we can de-
tect similar strings by detecting chains of common strings systematically. More
precisely, there exists following property for si and sj of EditDist(si, sj) < d.
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Fig. 1. An example pattern for block size 5 and edit-distance threshold 3. si matches
to X with no offset in the first block and the third block. sj matches to X with no
offset in the first block but with -1 offset in the third block.

If si are divided into b blocks (b > d), there exists at least b-d blocks that
exactly match to sj with bounded slide width −⌊d/2⌋ ≤ p ≤ ⌊d/2⌋.

SLIDESORT utilizes this property and systematically finds groups of se-
quences which share a chain of common b− d blocks in the similar way to mul-
tiple sorting method [3], and then calculates edit distance of all sequence pairs
in each group. In many case of the short read analyses, the size of the group
sharing a long common substring is much smaller. Thus the proposed method
can largely reduce costly edit distance calculations.

To find common b−d blocks effectively, pattern growth approach is employed.
Let us define a pattern of length k be a sequence of strings and block indices,

X = [(x1, y1), . . . , (xk, yk)],

where xi is a string and yi is a block index. Pattern X matches to string s with
offset p, if xi matches to yi-th block with slide width pi, for i = 0, . . . , k. All
occurrences of X in the database are denoted as

C(X) = {(i, p) | X matches si with offset p}.
For convenience, the occurrence set O(X) is defined as the set of sequences ap-
pearing in C(X). The occurrence frequency (support) of X is defined as |O(X)|.
Figure 1 illustrates an example of patterns with b = 5, d = 3.

All patterns of length b − d are enumerated by a recursive pattern growth
algorithm. In the algorithm, a pattern tree is constructed, where each node
corresponds to a pattern (Figure 2). Nodes at depth k contain patterns of length
k. At first, patterns of length 1 are generated as follows. For each block y1 =
1, . . . , d + 1, all substrings corresponding to y1 are collected from database with
offsets −⌊d/2⌋ ≤ p ≤ ⌊d/2⌋ and stored in a string pool. Applying radix sort to
the string pool and scanning through the sorted result, repetition of equivalent
strings can be detected. Each pattern of length 1, denoted as X1, is constructed
as a combination of the repeated string x1 and y1, X1 ← {(x1, y1)}. At the
same time, all occurrences C(X1) are recorded. If si matches the same pattern
X1 by several different offsets, only the smallest offset is recorded. They form the
nodes corresponding to depth 1 of the pattern tree. Given a pattern Xt of length
t, its children in the pattern tree are generated similarly as follows. For each
yt+1 = yt+1, . . . , d+t+1, a string pool is made by collecting substrings of O(Xt)
corresponding to yt+1 with offsets −⌊d/2⌋ ≤ p ≤ ⌊d/2⌋. Because the string pool
is made from the occurrence set only, the size of the pool decreases sharply as a
pattern grows. By sorting and scanning, a next string xt+1 is identified and the
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Fig. 2. Pattern growth and pruning process of the proposed method. Patterns are
enumerated by traversing the tree in depth first manner. In each node, new elements are
generated by sorting substrings in sequence pool (”ATA”, ”TAT”, ”TTA” for y1 = 1).
Useless patterns (”TTA” in this case) are removed. Remaining elements are added to
yield new patterns. This process is executed by recursive call until the pattern size
reaches b− d.

pattern is extended as Xt+1 ← Xt + {(xt+1, yt+1)}, and the occurrences C(Xt)
are updated to C(Xt+1) as well. The pattern tree is effectively pruned to avoid
generating useless patterns. As pattern growth proceeds in a depth-first manner,
peak memory usage is kept small. As implied in the property, every neighbor
pair (Figure 1) appears in the occurrence set O(X) of at least one pattern. Since
one of the pair must have zero offset, the set of eligible pairs is described as

PX = {(i, j)|i < j, i, j ∈ O(X), si matches X with zero offset}.
We can ensure that no pair is reported twice by considering lexicographical order
of a pattern and offsets. Since not all members of PX correspond to neighbors,
we have to verify if they are neighbors by actual edit distance calculation.

3 Results and Discussion

The proposed method was compared to the state-of-the-art tools BWA [2] and
SeqMap [1]. The former is based on suffix array and the latter is based on an
ELAND-like methodology of using multiple indexes for all block combinations.
BWA and SeqMap are applied to all pairs similarity search by creating an in-
dex from all short reads and querying it with the same set of reads. Also, our
method was compared to the naive approach that calculates edit distances of
all pairs. All the tools are evaluated on a public short read dataset generated
by Illumina Genome Analyzer with sequence length 87 (SRR020262) which is
downloaded from NCBI Sequence Read Archive. Figure 3 plots computation
time and memory usage against the distance threshold d. SLIDESORT is con-
sistently faster in all configurations. As the number of sequences grows and the
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Fig. 3. Computation time and Memory usage.

distance threshold is increased, the difference from BWA and SeqMap becomes
increasingly evident. Not all results are obtained, because of the 30GB memory
limit and 300,000 seconds time limit. The peak memory of BWA for the search
step is the smallest in most of the configurations, while that of SLIDESORT
is comparable or slightly better than BWA’s peak indexing memory. BWA is
most efficient in space complexity, because its index size does not depend on the
distance threshold. Instead, BWA’s time complexity rapidly deteriorates as the
edit distance threshold grows due to explosion of the number of traversed nodes
in backtracking. In contrast, SeqMap indexes and hashes all the combination
of key blocks, which leads to huge memory usage. SLIDESORT is similar to
SeqMap in that it considers all block combinations, but is much more memory
efficient. The difference is that SLIDESORT is an indexing free method which
dynamically generates the pattern tree by depth first traversal. It allows us to
maintain only necessary parts of tree in memory. All these results demonstrate
practical merits of SLIDESORT.
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Gene expression is a temporal process that is highly regulated. Much work
in bioinformatics studies this process in order to better understand the function
of individual genes and to gain insight in complete biological systems. The task
most commonly addressed in this context is the task of clustering time series of
gene expression data, where the aim is to discover groups of genes with similar
temporal profiles of expression and to find common characteristics of the genes
in each group. Clustering genes by their time expression pattern is important,
because genes that are co-regulated or have a similar function will have similar
temporal profiles under certain conditions.

In our work, we develop and apply a clustering approach that is well suited
for analysing short time series. Besides finding clusters, e.g., groups of genes,
we also aim to find descriptions/explanations for the clusters. Instead of first
clustering the expression time series and elucidating the characteristics of the
obtained clusters later on, we perform so-called constrained clustering, which
yields both the clusters and their symbolic descriptions all in one step.

The constrained clustering is performed by using predictive clustering trees
(PCTs), which are a part of a more general framework, namely predictive clus-
tering [1]. Predictive clustering partitions a given dataset into a set of clusters,
such that the instances in a given cluster are similar to each other and dissimilar
to the instances in other clusters. In this sense, predictive clustering is identical
to regular clustering [3]. The difference is that predictive clustering associates a
predictive model to each cluster.

In our specific analysis scenario, the prediction associated to each leaf of
the PCT is a gene time-course expression profile. The descriptions associated
to the cluster, i.e., the nodes of the PCT, are derived from the Gene Ontology
(GO) [2]. A sample PCT is presented in Figure 1. On the left, there is a graphical
representation of a PCT. Each internal node of the tree contains a GO term. The
leaves of the tree contain the clusters (C1 through C5)of genes sharing common
GO annotations. Each cluster also has a temporal response assigned to it the
best, i.e., cluster prototype.
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The rest of the figure represents the output of the PCT: the temporal profiles
of each cluster, the number of genes in each cluster, and the error of the cluster
prototype. The heatmap is another type of visualisation of the cluster prototype,
described by its corresponding GO annotations, at the rightmost side on the
figure. A detailed description of the use of PCTs for clustering gene expression
time-course data can be found in [4].

Fig. 1. A sample PCT used for clustering short time series of gene expression data

In this work, we use PCTs to analyse temporal expression profiles as observed
in Schwann cells. Our primary interest was the temporal response of Schwann
cells to infection with live Mycobacterium leprae. For comparison, the Schwann
cells have also been exposed to four other different conditions, namely: infection
with irradiated/sonicated M. leprae, infection with M. smegmatis expressing a
M.leprae adhesion molecule, and control (growth in medium) conditions. For
all conditions gene expression was measured at five distinct time points. The
purpose of our analysis was to investigate which groups of genes, involved in
certain cellular processes are responding in a coordinated manner to the different
kind of stimuli.
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Table 1. Identified groups of genes with a coordinated response to live M. leprae
infection. Each group is described by combination of GO terms from the different GO
hierarchies and they include different number of genes

Group description Size

cytoplasmic part; regulation of G-protein coupled receptor
protein signaling pathway 11

cell part; microtubule-based process 17

cytoplasmic part; protein binding; guanyl-nucleotide exchange factor activity 28

protein binding; positive regulation of ligase activity 27

cell part; macromolecular complex; intermediate filament 12

cell part; regulation of ligase activity 8

protein binding; intracellular; GTPase activity 12

cytoplasmic part; protein binding; clathrin coated vesicle membrane 26

cytoplasmic part; translational elongation 87

protein binding; collagen 21

The results show most distinctive difference in activation between pathways
and cellular process during live infection as compared to the control case. As ex-
pected, if cells grow undisturbed in medium, the genes showing the most distinct
activity profiles are those involved in general life-sustaining processes, such as
mitochondrial respiration and ribosomal proteins synthesis. In contrast to this,
when Schwann cells undergo infection with live M. leprae, many groups of genes
with specific functions are up- or down- regulated, for example the regulation of
G-protein coupled receptor protein signalling pathway. Gene ontology descrip-
tions of some groups of genes that have a coordinated response to live M. leprae
infection are presented in Table 1.

In sum, we have successfully applied predictive clustering to group human
genes into clusters with similar temporal profiles of expression. This was studied
in the context of infection of Schwann cells with M. leprae. We obtained clearly
described groups of genes with distinct temporal profiles of expression. Groups
of this kind can be used to identify pathways regulating the processes of interest
(response to M. leprae infection).
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Since the introduction of next generation sequencers, the sequencing of cDNA
libraries is becoming an attractive alternative to microarrays for gene expression
experiments. But the statistical methodology for cDNA sequencing data is not
as mature as that for microarrays. The problem is that while the biological
processes underlying the gene expression levels are best modeled using linear
models (the distribution of the gene expression levels across genes(transcripts)
is log-normal), the the measurement process is basically a count process. This
calls for a lognormal-Poisson model, a model which is difficult to make inference
in since the likelihood functions is not available on closed form.

We developed estimators for a multivariate log-normal Poisson model, in
which the per-transcript variance is gamma distributed. The model provides
good fit to real. An application of this model is shown on the poster, using
simulated data: Model-based principal component analysis is much better than
PCA based on raw or transformed data in terms of separating the main tissue
sample effect (which is not interesting since it just reflects the dilution of the
mRNA) from the expression profile. This allows users to visualize clustering of
transcripts or (as illustrated on the poster) tissue samples.

Inference in models including tissue-sample related covariates, for example
identification of differentiated transcripts in a two-group comparison study, is
also possible, but depends on the modeling of the covariate effects as random
effects across transcripts. This is difficult since the covariates in typical experi-
ments only explain a small fraction of the overall variance in the data.
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Gene regulatory network reconstruction with a
combination of genetics and genomics data

Jimmy Vandel, Simon de Givry, Brigitte Mangin, and Matthieu Vignes

BIA Unit, INRA Toulouse, France

Abstract. We develop here a discrete Bayesian network modeling with
a structure learning approach for Gene Regulatory Network (GRN) re-
construction. It endeavours genetic variability (measured by markers on
the genome) in a segregating population as a cause to genomics obser-
vations. Our results suggest that it improves the deciphering of GRN.

Keywords: discrete Bayesian network, graph inference, gene regulation,
genetical genomics

1 Introduction

The gene is the functional unit carrying from one generation to the next infor-
mation that allows organisms to achieve a proper survival. They are expressed in
the cell so that in the end proteins, the active molecules of living organisms are
produced. A better understanding of the regulation of genes is a gain towards
dealing with genetical desease in animals or susceptibility to stresses in plants.
Genes do not act independently from each other. They fulfil their role in a con-
certed manner. A convenient modelling of these interactions involve networks
and inferring relationships in a GRN is a complex task. In particular, plenty of
gene expression data governed by even more regulations are measured on a small
sample of individuals (the segregating population) that represent a small sub-
set of genetical variability in terms of background within the species but rich in
terms of a cross between two strains that have a known difference in a phenotype
of interest. Whilst first approaches have focused on thresholding local relation-
ships between genes (e.g. correlations) to reconstruct the global network ([1]),
recent approaches are, to our knowledge of two kinds: based either on Structural
Equation Modeling (SEM, [4]) or on Bayesian Networks (BN, [3]). We chose to
explore this latter probabilistic modeling. More precisely, we propose and assess
a probabilistic model for both genetics and genomics data. It presuppose that we
have a dense genetic map, that every gene has a measured stationary-state ex-
pression on the microarray, that the environment is fully controlled and that no
epigenetic effect needs to be inclued, that is gene regulation signals exclusively
stem from the sequence.
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2 Bayesian network modeling and structure learning

A Bayesian network ([2]) is a Directed Acyclic Graph (DAG). Discrete random
variables (Xi)i=1...n modeling observations are on the edges of the graph and
diredted edges state conditional dependencies in the joint distribution of the
variables:

P (X) =
n∏
i=1

P (Xi | Pa(Xi)),

where Pa(Xi) is the set of parents of Xi in the network.
We first present a modeling that distinguish between two kinds of variables

: Mi for the ’marker’ variable that can take two different values : ’normal’ (0)
or ’muted’ (1) and Ei for the gene expression data observation, the number of
levels of which depends on the chosen discretization method (either a modified
k-means or a Gaussian mixture). An additional simplification is that there is at
most one funtional polymosrphism and that it is linked to a point mutation or
Single Nucleotide Polymorphism (SNP) that can be identifed thanks to a close
enough marker. This is described in Fig. 1.

We chose a simplified structure for the network by fusing the two nodes
associated to a single gene in the network (Fig. 2). Its advantage is that the
number of nodes is decreased two-fold making the structure inference much faster
without a loss of information as far as the GRN reconstruction is concerned. The
final output is the partially directed BN that represents the Markov equivalence
class of the found network.

Fig. 1. Non fused model with the three different possible regulations: (i) cis - M3

value impacts the expression E3 so the mutation has to be in the promoter region, (ii)
cis-trans - gene 3 is regulated by E1: the mutation in the promoter region of M1 can
change its expression that in turns has an influence of the expression E3 and (iii) trans
- gene 2 regulates E3 according to the status of M2 (on the coding sequence).

Two main families of BN learning methods compete: maximum scoring of a
fit of the network to available data and conditional independence testing. We
focused on the former one. We specified the Bayesian Information Criterion in
our setting:

BIC =
∑
l

∑
i

[
logP (ei | Pa(gli),m

l
i) + logP (ml

i midPa(gli))
]−1

2
logm.Dim(BG),
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Fig. 2. Fused model that corresponds to the one in Fig. 1

where m is the number of samples (<< n) and gli = (eli,m
l
i) is the expression

and genotype observation for gene i and sample l. Note that the second term
only depends upon the genetic linkage between markers and doesn’t need to be
learned so it is removed from the optimized function. We set Dim(BG) =

∑
i qi,

qi being the number of possible configurations for Pa(gi). A Greedy Search (GS,
from a MatLab library) was then applied as the number of possible networks
would exceed computational limitations for more than ∼ 30 nodes: simple lo-
cal modification to an initial graph are considered (edge deletion, adding or
reversal) and the one that maximises the score is kept. The initial graph stems
from a statistical analysis to select for each (continuous) expression level Ei the
set of markers (limited to 9 for computational sake) which explains at best its
variability. This selction takes place in a linear regresion model for Quantita-
tive Trait Loci (QTL) cartography. We performed it with the MCQTL software
(http://carlit.toulouse.inra.fr/MCQTL/). Since it should define a BN, cy-
cles had to be removed with a heuristics.

3 Genetical genomics data simulation

Fifty 50-gene scale-free (hence having some biological feature) networks were
retrieved from http://www.comp-sysbio.org/AGN/. Genotypes for m = 500
(so not really ) backcross individuals on a single 10-Morgan chromosome were
generated (markers were randomly placed and the mutation can either be in
the promoter or in the coding region but fixed among the population) with
CarthaGène (http://www.inra.fr/mia/T/CarthaGene/). The gene expression
simulation was based on an ODE and steady-state were obtained from this gene
expression network dependencies (see [4] and http://www.copasi.org/). As
mentioned earlier, gene expression data need to be discretized, a crucial step for
downstream analysis. We chose a Gaussian mixture model approach and coupled
it to a modified k-means when the expression level distribution is unimodal. More
insight in this step could be of interest.

4 Experimental results and concluding remarks

Results are presented in terms of sensitivity (= TP
TP+FN ) and precision (=

TP
TP+FP ) without taking into account the directions of edges. Those are means
over the 50 network from Section 3. Table ?? the gain in using genetic data in
addition to expression data only. We also show that the eQTL analysis provides
a good initial graph to search the structure of the BN. BIC curves were also
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looked at (data not shown). An example of such a network can be found on
Figure 3.

Table 1. (i) Exp: BN on Ei’s only, (ii) Exp+Gen, MWST init: fused BN (see Section
2) with a maximum spanning tree as an initial graph and (iii) Exp+Gen, eQTL init:
same model with the eQTL analysis network as input of the algorithm

Exp only Exp+Gen, MWST init Exp+Gen, eQTL init

Precision 0.26 0.52 0.61
Sensibility 0.23 0.39 0.48
Edge number (TP + FP ) 45 37 40

Fig. 3. Network reconstruction example: (top left) initial network to recover, (top
right) network from the eQTL analysis, (bottom left) intial BN after edge removal and
(bottom right) GS result. Gene with mutation in promoter region are in blue, those in
coding region in pink or red (not regulated hence with constant gene expression level).
A green edge is a TP, a wellow one is a FP.

We presented a method for the inference of structure of a BN that represents
a GRN from both genetic and genomics data. Moreover, the eQTl statistical
analysis seems a complementary method to the presented method. Still our ab-
solute results seem a wee bit below those of [4] but our datasets cannot be
compared. Future work include a thorough comparison with classical methods
for GRN inference either from expression data only or from genetical genomics
data: SEM, Gaussian graphical modeling, . . . . We also would like to use more ef-
ficient algorithms for structure inference and test our model in a situation where
the number of sample is truly smaller than the number of genes. This is the topic
of the next ’Systems Genetics’ challenge of the DREAM5 competition.
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Kuijl Coenraad, 137
Kummer Ursula, 5

Lebre Sophie, 127
Lehrach Hans, 7
Lio‘ Pietro, 147
Ljosa Vebjorn, 9

Müller Klaus-Robert, 133
Madan babu M., 157
Mangin Brigitte, 169
Marchal Kathleen, 119
Meeng Marvin, 35
Meysman Pieter, 119
Millinghoffer András, 91
Mosci Sofia, 39, 105
Mukherjee Sach, 135

Neefjes Jacques, 137
Ngomo Axel-Cyrille Ngonga, 43
Nguyen Viet Ahn, 147

Ocone Andrea, 47
Opper Manfred, 51, 149



176 MLSB’10: J. Vandel et al.

Ottenhoff Tom H.M., 163

Paul Petra, 137

Rahmani Hossein, 55
Rosasco Lorenzo, 39, 105
Rosso Marie-Noëlle, 81
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