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Abstract. Automating the process of model building from experimen-
tal data is a very desirable goal to palliate the lack of modellers for many
applications. However, despite the spectacular progress of machine learn-
ing techniques in data analytics, classification, clustering and prediction
making, learning dynamical models from data time-series is still challeng-
ing. In this paper we investigate the use of the Probably Approximately
Correct (PAC) learning framework of Leslie Valiant as a method for the
automated discovery of influence models of biochemical processes from
Boolean and stochastic traces. We show that Thomas’ Boolean influence
systems can be naturally represented by k-CNF formulae and learned
from time-series data with a quasi linear number of Boolean activation
samples per species, and that positive Boolean influence systems can be
represented by monotone DNF formulae and learned actively with both
activation samples and oracle calls. We evaluate the performance of this
approach on a model of T-lymphocyte differentiation, with and without
prior knowledge, and discuss its merits as well as its limitations with
respect to realistic experiments.

1 Introduction

Modelling biological systems is still an art which is currently limited in its appli-
cations by the number of available modellers. Automating the process of model
building is thus a very desirable goal to attack new applications, develop patient-
tailored therapeutics, and also design experiments that can now be largely au-
tomated with a gain in both the quantification and the reliability of the obser-
vations, at both the single cell and population levels.

Machine learning is revolutionising the statistical methods in biological data
analytics, data classification and clustering, and prediction making. However,
learning dynamical models from data time-series is still challenging. A recent
survey on probabilistic programming [9] highlighted the difficulties associated
with modelling time, and concluded that existing frameworks are not sufficient
in their treatment of dynamical systems. There has been early work on the use
of machine learning techniques, such as inductive logic programming [12] com-
bined with active learning in the vision of the “robot scientist” [4], to infer gene



functions, metabolic pathway descriptions [1,2] or gene influence systems [3], or
to revise a reaction model with respect to CTL properties [5]. Since a few years,
progress in this field is measured on public benchmarks of the “Dream Challenge”
competition [11]. Logic Programming, and especially Answer Set Programming
(ASP), provide efficient tools such as CLASP [7] to implement learning algo-
rithms for Boolean models. They have been applied in [8] to the detection of
inconsistencies in large biological networks, and have been subsequentially ap-
plied to the inference of gene networks from gene expression data and to the
design of discriminant experiments [19]. Furthermore, ASP has been combined
with CTL model-checking in [13] to learn mammalian signalling networks from
time series data, and identify erroneous time-points in the data.

In this paper, we consider the framework of Probably Approximately Cor-
rect (PAC) Learning which was introduced by Leslie Valiant in his seminal paper
on a theory of the learnable [17]. Valiant questioned what can be learned from
a computational viewpoint, and introduced the concept of PAC learning, to-
gether with a general-purpose polynomial-time learning protocol. Beyond the
algorithms that one can derive with this methodology, Valiant’s theory of the
learnable has profound implications on the nature of biological and cognitive
processes, of collective and individual behaviors, and on the study of their evo-
lution [18].

Here we investigate PAC learning as a method for the automated discovery
of influence models of biochemical processes from time-series data. To the best
of our knowledge, the application of PAC learning to dynamical models of bio-
chemical systems has not been reported before. We show that Thomas’ gene
regulatory networks [16,15] can be naturally represented by Boolean formulae
in conjunctive normal forms with a bounded number of litterals (i.e. k-CNF for-
mulae), and can be learned from Boolean transitions with a quasi linear number
of Boolean transition samples, using Valiant’s PAC learning algorithm for k-
CNF formulae. We also show that Boolean influence systems with their positive
Boolean semantics discussed in [6] can be naturally represented by monotone
DNF formulae, and learned actively from a set of positive samples with calls to
an oracle. These results3 are evaluated on a Boolean influence model of the dif-
ferentiation of the T-helper lymphocytes from [14,10], composed of 32 influences
and 12 variables.

2 Valiant’s PAC Learning Algorithms

Let n be the dimension of the model to learn, and let us consider a finite set
of Boolean variables x1, . . . , xn, A vector is an assignment of the n variables to
B∗ = {0, 1, ∗}; A total vector is a Boolean assignment, in B = {0, 1}; A Boolean
function G : Bn → B; assigns a Boolean value to each total vector; A concept
F : B∗n → B assigns a Boolean value to each vector.

3 The code is available at http://lifeware.inria.fr/wiki/software/#CMSB17.
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The idea behind the PAC learning protocol is to discover a concept, or a
Boolean function, G which approximates a hidden concept F , while restricting
oneself to the two following operations :

– Sample(): returns a positive example, i.e. a vector v such that F (v) = 1.
The output of Sample() is assumed to follow a given probability distribution
D(v), which is used to measure the approximation of the result.

– Oracle(v): returns the value of F (v) for any input vector v.

Definition 1 ([17]). A classM of Boolean functions is said to be learnable if
there exists an algorithm A with some precision parameter h ∈ N such that A
runs in polynomial time both in n and h; and for any function F inM, and any
distribution D on the positive examples, A deduces with probability higher than
1− h−1 an approximation G of F such that

– G(v) = 1 implies F (v) = 1 (no false positive)
–

∑
v s.t. F (v)=1∧G(v)=0

D(v) < h−1 (low probability of false negatives)

Valiant showed the learnability of some important classes of functions in
this framework, in particular for Boolean formulae in conjunctive normal forms
with at most k literals per conjunct (k-CNF), and for monotone (i.e. negation
free) Boolean formulae in disjunctive normal form (DNF). The computational
complexities of the PAC learning algorithms are expressed in terms of some
function

Theorem 1 ([17]). For any k, the class of k-CNF formulae (i.e. with at
most k literals per conjunct) on n variables is learnable with an algorithm that
uses L(h, (2n)

k+1
) positive examples and no call to the oracle (where L(h, S) ≤

2h(S + loge h)). The class of monotone (i.e. without negation) DNF formulae
on n variables is also learnable with an algorithm that uses L(h, d) examples
and dn calls to the oracle (where d is the largest number of prime implicants
in an equivalent rewriting of the formula to learn as a non-redundant sum of
prime-implicants).

3 Thomas’s Boolean Regulatory Network

Definition 2 ([15]). A Thomas network on a finite set of genes {x1, . . . , xn} is
defined by n Boolean functions {f1, . . . , fn} which give for each gene its possible
next state, given the current state.

k-CNF formulae can be used to represent Thomas gene regulatory network
functions with some reasonable restrictions on their connectivity, e.g. for net-
works of degree bounded by k, When restricting to monotone activation func-
tions, i.e. without negation testing the absence of expression of a gene, monotone
DNF formulae can be used as well to represent monotone Thomas networks,
i.e. with positive and negative influences but no influence inhibitors [6].
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Here we consider a regulatory network of
12 variables which models the differen-
tiation between Th-1 and Th-2 lympho-
cytes from an original CD4+ T helper
(Th-0). The model has three differ-
ent stable states corresponding to Th-
0 (naive lymphocyte), Th-1 and Th-2
when IL12 is off, and two others when
IL12 is on (the Th-0 one is lost). This
model, presented in [14] is actually a
Boolean simplification of the original
multi-level model of [10].

4 PAC Learning from Boolean and Stochastic Traces

Valiant’s work on PAC learning provides an elegant trail to attack the challenge
of inferring the structure of influence models from the observation of data time
series, and more precisely to automatically discover possible regulatory networks
of a biochemical process, given sufficiently precise observations of its executions.

The Boolean dynamics of biochemical influence systems, including Thomas
regulatory networks, can be represented by k-CNF formulae without loss of gen-
erality, and k-CNF PAC learning algorithm can be used to infer the strucutre of
the network from a sufficiently large and diverse set of state transition traces.
When dimension increases, we show on the example of T-lymphocyte differen-
tiation from the litterature that the k-CNF PAC learning algorithm can also
leverage available prior knowledge on the system to deliver precise results with
a reasonable amount of data.

The Boolean dynamics of positive influence systems can also be straightfor-
wardly represented by monotone DNF activation and deactivation functions, and
monotone DNF PAC learning algorithm applied with an interesting recourse to
oracles which are particularly relevant in the perspective of online active learning
and experimental design.

More work is needed however to make comparisons on common benchmarks
with other approaches already investigated in this context, such as Answer Set
Programming (ASP) and budgeted learning, and to investigate the applicability
of these methods to real experiments taking into account particular biological
technologies.
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