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Summary.  Epistasis  (non-additive  genetic  interaction)  is  one  possible  cause  for  the  'missing
heritability' that is observed for many complex traits. However, there is a lack of sensitive methods
for the detection of epistasis. We propose four approaches for the detection of epistasis, which are
based  on  the  machine  learning  algorithm  Random  Forest:  the  split  asymmetry,  the  selection
asymmetry,  the  paired  selection  frequency,  and  an  ensemble  method  that  combines  the  three
approaches. We assess the performance of these methods on simulated and real data, comparing
them to the commonly used exhaustive pair-wise ANOVA approach. Our scores perform better than
ANOVA on both simulated and real data and we discuss possible  reasons for the performance
differences. This work contributes to the long-standing problem of extracting information about the
underlying model from a Random Forest.

Introduction

It is a central objective in biology to identify genomic variations that determine complex biological
phenotypes  and  quantitative  traits.  However,  the  cumulative  contribution  of  individual  genetic
variants  detected  by  genome-wide  association  studies  (GWAS)  can  only  partially  explain  the
phenotypic variance due to genetic effects – a phenomenon termed ‘missing heritability’. Epistasis
describes non-additive interactions between markers, i.e. situations where the contribution of two or
more genetic variants on a quantitative trait differs from the sum of their marginal effects. Epistasis
suggests  functional  relationships  between genes,  and has  been proposed as  one  possible  factor
underlying  missing  heritability  (reviewed  in  [1]).  Commonly,  two  types  of  epistasis  are
distinguished: (i) AND-epistasis, where an allele at one locus enhances or alleviates the effect of
another locus, and (ii) XOR-epistasis, where the effects of alleles at two loci are diminished when
they  occur  together  [2].  However,  detecting  epistatic  interactions  in  quantitative  trait  studies
remains  challenging  because  of  the  combinatorial  number  of  hypotheses  to  test  and  due  to
insufficient statistical power [3]. A wide variety of methods to detect epistasis has been developed,
yet most methods are not applicable on a genome-wide scale, and/or make assumptions about the
distribution of the data and the scale and order of interactions, which may not apply to real data
(reviewed in [3]). 

We and  others  have  shown that  Random Forest  (RF)  is  a  very  efficient  method  for  detecting
genotype-phenotype  relationships  especially  in  the  presence  of  epistasis,  because  it  implicitly
accounts for non-additive effects [4]–[8]. RF consist of an ensemble of classification and regression
trees  (CART),  which  are  trained  on  bootstraps  and  random samples  of  the  data,  leading  to  a
remarkable robustness against overfitting [9]. A notorious problem of RF remains that it is difficult
to  extract  information  about  relationships  between  features  from the  forest.  That  is,  however,
necessary for detecting epistatic interactions between markers (i.e. features). Here we present four
new approaches that exploit the structure of RF to detect different types of epistatic interactions, the
split asymmetry test, the selection asymmetry test, the paired selection frequency (paired SF) test,



and  an  ensemble  method.  These  methods  for  detecting  non-additive  feature  interactions  are
applicable beyond the genetic mapping problem.

Methods

Paired Selection Frequency. This approach is based on the expectation that interacting markers are
more likely to be selected in the same tree than non-interacting markers. The number of times two
markers were selected in the same tree in the RF are compared to the number of times the markers
were selected independently of each other. These counts are used to build a contingency table and a
one-sided Fisher's exact test is applied to detect co-dependence between the markers. 

Split Asymmetry.  Given two markers A and B in the same path of a CART (A before B), the
difference in  mean phenotype observed after  a split  on marker  B depends on the result  of  the
partitioning  on  marker  A (Figure  1,  green  lines).  We  use  a  Student's  t-test  to  check  for  this
imbalance in phenotype differences for all marker pairs. Each marker pair is tested twice in two
independent tests. Once for the cases where marker A was used first, and also for the cases where
marker B was used first. The two p-values are then combined using the Fisher method [10]. 

Selection Asymmetry. When two markers A and B interact through AND-epistasis,  there is an
imbalance in the frequency of splits using B after A (Figure 1, red dashed arrow). We exploit this
property to detect epistasis by  testing for this interdependence in the marker selection frequency
with a binomial test of equal probabilities. Again, we combine the  p-values for the two possible
pairs (AB and BA) using the Fisher method.

Figure 1: Schematic representation of the detection of epistasis from Random Forest.  Shown are example subtrees that
depict the splitting of data on two markers A and B that (a) do not interact, (b) are in AND-type epistasis, or (c) are in XOR-
type epistasis. The latter two lead to asymmetries in the trait value distribution (indicated by the green lines), which are
exploited in the split asymmetry approach. In addition, there are unequal probabilities for the selection of marker B for the
two partitions created by the split on A (indicated by the red dashed arrow), which is tested for in the selection asymmetry
approach.

Ensemble  Method. The  p-values  generated  by  the  Paired  SF,  Split  asymmetry and  Selection
asymmetry approaches were combined using the Fisher method to create an ensemble score. 

Simulated Data.  Traits were simulated based on genotypes from the widely used Saccaromyces
cerevisiae BYxRM cross [11]. Different combinations of marginal and epistatic effects with varying
effect sizes, different types and orders of epistasis and varying noise levels were simulated 32 times
each. 

Benchmark on Real Data. In order to evaluate the usability of our method for real data, we applied
our methods to an expression QTL (eQTL) dataset of 112 segregant strains from a Saccaromyces
cerevisiae  cross (RMxBY, data unpublished). This dataset encompasses genotype information for



3,593 markers and RNA-seq-based expression data for 1,050 transcripts that correspond to essential
genes (i.e. genes that are lethal when knocked-out). Null distributions for the area under receiver
operating  characteristic  (AUROC)  and  the  area  under  the  precision-recall  curve  (AUPR)  were
generated from permutations of the double knock-out reference data and were used to compute
empirical p-values, which were then corrected using the Bonferroni method.

Results and Discussion

Benchmark on Simulated Data. The four RF-based methods were benchmarked on simulated data
and compared to an exhaustive pair-wise ANOVA. The ensemble method recovered most simulated
interactions (Figure 2). In general, the RF-based methods were more performant when at least one
of the interacting markers had a marginal effect (Figure 2b), which is likely to be the case in a real
biological setting. However, this represents one of the limitations of RF: the modeling relies on the
presence  of  marginal  effects.  Accordingly,  RF-based  methods  were  not  able  to  recover  XOR-
epistasis in the absence of marginal effects of the interacting markers (data not shown). Yet, the
biological relevance of XOR epistasis without marginal effects remains questionable. 

Figure  2:  Sensitivity  of  methods  based  on  representative  simulation  scenarios.  Here,  sensitivity  is  the  proportion  of
simulated interactions that were recovered. An interaction was regarded as recovered if its p-value was below the lower 0.5-
percentile of p-values (i.e. 99.5% p-values were higher). (a) Simulation scenario with AND-epistasis between two markers and
marginal effects of two unrelated markers. (b) Simulation scenario with AND-epistasis between two markers, one of which
has an additional marginal effect.

Benchmark on Real  Data.  We assessed  the  biological  relevance  of  the  proposed methods by
applying them to an eQTL dataset in comparison to an exhaustive pair-wise ANOVA approach. The
performance was measured by the ability to recover epistatic interactions detected in double knock-
out  experiments  [12],  as  previously  proposed  [6].  All  RF-based  approaches  outperformed  the
ANOVA (Figure 3) based on the AUROC and the AUPR. In contrast to the simulation results, the
split asymmetry outperformed the ensemble method. AUROC and AUPR were low for all tested
methods,  although  significantly  above  random  (p-value<2*10-4 for  all  methods).  A  perfect
performance (i.e. AUROC=1.0) is impossible in this benchmark, because the reference data (the
double knock-out study) measures a different phenotype (growth versus expression), and because it
entails  a  different  type  of  genetic  perturbation  (gene  knock-outs  versus segregating  genetic
variants).  Thus,  the  reference  data  can  in  this  case  only  be  used  for  a  relative  comparison of
different methods, but not for an evaluation of their absolute performance.

(a) (b)



Conclusions

Here we propose methods that exploit RF for the detection of epistasis. These methods outperform
the  exhaustive  pair-wise  tests  in  simulated  and  real  data.  Since  Random  Forest  makes  no
assumptions about the model complexity it is – in principle – possible to extend this approach from
two-way interactions  to  higher  order  interactions.  Our scores for  detecting non-additive feature
interactions in RF are applicable beyond genetic mapping where the model structure of a RF needs
to be analysed.

Figure 3: Performance on real data. Performance was evaluated by the ability of the evaluated methods to correctly classify
interacting and non-interacting genes, using double knock-out growth data as a gold standard. Shown are the differences
between the results of the tested methods and random assignment (red dashed line) for (a) AUROC and (b) AUPR. The RF-
based methods outperform the ANOVA, while the split asymmetry approach has the best recovery and precision.
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