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Deep50: Web service for multi-task protein-ligand
interaction prediction

Abstract—The prediction of drug and protein interactions is
crucial for the development of new drugs. We designed and
developed a machine learning model, and a coupled web service
infrastructure to serve queries about compound activities. The
service can handle hundreds of queries real time. We evaluated
the predictive performance of the underlying model resulting in a
competitive result of mean AUC of 0.930 over different proteins.

I. INTRODUCTION

To find really novel compounds with appropriate physico-
chemical properties and pharmacological activity, millions of
candidates should be screened. If we are able to reduce this
number, we can reach dramatic cost reduction in the early
phase of the pharmaceutical development programs.

We believe, that high quality in-silico activity prediction
service can be especially useful for the case of orphan drug
research which now is becoming more attractive area thanks
to the legislative easing in the last two decades in the EU (EC
141/2000) and the US (Orphan Drug Act).

Therefore, we propose an easy to use, real-time, on-line
prediction service called Deep50, which employs a deep fac-
torization based multi-task neural network model.

II. DEEP FACTORIZATION MODEL

The most straightforward way to handle the protein-
compound interaction prediction task is to represent all chem-
ical compound with a high-dimensional fingerprint vector,
based on its chemical structure. Every element of this vector
encodes the occurrence of some substructure, and so the vector
is inherently sparse.

However, we know that fingerprints are not covering all as-
pects of a chemical compound necessary to predict its activity
on a target. Most of the times, for example, they do not encode
the correct three-dimensional conformation of the compound
necessary for the interaction. To overcome this limitation, we
propose a deep factorization model, which assigns to every
compound an embedding vector

hemb = mol2vec(cmpd), (1)

where cmpd is the identifier of the compound, in our case
computed from Canonical SMILES code.

This allows us to employ the well known strategy from
word embeddings that uses a lookup table to store for ev-
ery compound its learned embedding vector, which is not
explained by the fingerprint [1]. To motivate this approach,
let us consider the case of orphan drugs. To make the cost
of the clinical testing affordable, we may want to use the
strategy of drug repositioning [2][3]. In this case we search

in the space of existing compounds that already have results
in clinical experiments and bioassays. The use of compound
embedding enables efficient transfer of this already existing
experimental knowledge by giving the model access to the
identity of the compound. This architecture can also be viewed
as a nonlinear extension of matrix factorization methods with
side information [4][5].

More specifically the deep factorization model is a neural
network, with L hidden layers, specified as
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Fig. 1. Architecture of the deep factorization model used by Deep50 for
protein-ligand activity prediction.

h1 = σ(Wfphfp +Wembhemb + b0) (2)
hi+1 = σ(Wihi + bi), (3)

where i = 1, . . . , L, and

hemb = mol2vec(cmpd) (4)
hfp = ecfp(cmpd) (5)

are the vectors from embedding and input fingerprints, respec-
tively. Figure 1 gives an overview of the architecture. The
final layer outputs logit scores predicting the activity of the
compound for each protein-threshold pair.

The model is trained with Adam optimizer with a fixed
learning rate schedule using early stopping on the validation
set.

III. WEB SERVICE

The proposed Deep50 uses TensorFlow for training and
inference[6]. We implemented a multi-threaded Flask based
stack which exports the trained TensorFlow model as a web
service. To implement the client side web interface we used
React and Redux technology stack. The service can handle
hundreds of parallel queries in real-time. The data preparation
steps and the web service architecture is displayed in Figure 2.
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Fig. 2. The architecture of the Deep50 web service.

IV. DATA

In the current version of Deep50 we focus on the in-
teraction measure IC50, which measures the concentration
of the chemical compound necessary to inhibit the baseline
activity of the protein by 50%. We prepared a dataset from
the public bioactivity database ChEMBL, Version 22.1[7].
First we searched for all Homo sapiens proteins and removed
duplicated measurements. Than we selected the 671 proteins
that had at least 100 IC50 measurements, and computed the
negative logarithm of the measurement values (pIC50). We
set four pIC50 activity cutoffs (5.5, 6.5, 7.5, and 8.5) and
defined a binary classification task for each protein-cutoff pair.
We transformed the original pIC50 values from ChEMBL
to the thresholded values. In ChEMBL there is a relation
associated to every value, which can be ”greater than”, ”less
than” or ”equal” type. In the case of inequalities we set the
corresponding binary activity only if their in can be determined
unambiguously (the ambiguous values are removed). For ex-
tracting the substructural features we used RDKit [8] Morgan
Fingerprint with radius 3 [9], which resulted in an 828,000
dimensional sparse vector hfp for each compound.

V. EVALUATION

For the evaluation, a test set containing 20% of the obser-
vations is chosen at random. We computed AUC for protein-
threshold pairs where the test set contained at least 10 active
and 10 inactive measurements. We observed average AUC
of 0.930. We found the predictive performance comparable
but the method significantly more computationally efficient
than the matrix factorization based methods [4]. Our model
achieves, at least in one of the pIC50 thresholds, an AUC value
higher than 0.9 on 465 out of 552 distinct protein targets (note
that 119 proteins did not have enough active measurements
to accurately evaluate the predictive performance). For the
histogram of the observed AUC values see Figure 3.
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Fig. 3. Histogram of the AUC values on distinct proteins.

VI. FUTURE WORK

One of our further goal is to integrate an error model into
Deep50 for the predictions. We aim to extend the well known
Platt scaling approach [10] with chemical space coverage
information. Our architecture does not depend on a fixed
feature representation like the Morgan fingerprint. As the
model is fully differentiable, we could combine the proposed
compound embedding with the supervised learning of features
directly from the chemical structures, like has been presented
in a recent work [11].
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