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Abstract

The analysis of single cell genomics data promises to
reveal novel states of complex biological processes, but
is challenging due to inherent biological and techni-
cal noise. We propose a probabilistic approach based
on sparse variational Bayesian Gaussian process latent
variable model (GPLVM) to perform robust pseudo-
time estimation whilst allowing for the incorporation
of prior information such as cell capture times. The
model converges an order of magniture faster compared
to existing methods whilst achieving similar levels of
estimation accuracy. We demonstrate the flexibility
of our approach by extending the model to higher-
dimensional latent spaces that can be used to simul-
teneously infer pseudotime and branching structure.

1 Introduction

The analysis of cell differentiation and maturation at
single-cell level has been shown to be promising, and
offers numerous advantages over bulk analysis. The
average transcriptomes across a cell population fails to
capture the crucial transcriptomic signal in individual
cells and recent studies have shown that many ques-
tions of cellular developments can be answered in a
more refined way in single-cell level (Cannoodt et al.,
2016).

During single cell sampling process, the actual tem-
poral label that identifies the cells’ position in the dif-
ferentiation trajectory is lost and these parameters be-
come unobserved, latent quantities known as pseudo-
time (Trapnell et al., 2014). The initial single cell data
may contain a mixture of cells of different cell cycle
stages (McDavid et al., 2014) or a set of cells sampled
at distinct time points (Windram et al., 2012). Start-
ing with the high dimensional data, the inferrence algo-
rithms first apply dimensionality reduction techniques
to get a compressed lower (usually two or three) di-
mensional representation. A number of dimensionality
reduction techniques have been adopted in single cell
transcriptomics studies such as Principal and Indepen-
dent Components Analysis (P/ICA) (Trapnell et al.,
2014; Ji and Ji, 2016); non-linear techniques such as t-
stochastic neighbourhood embedding (t-SNE) (Becher
et al., 2014) and diffusion map (Haghverdi et al., 2015).

The low-dimensional embedding is used to charac-
terize the pseudotime trajectory. Different formalisms
are used to represent a pseudotime trajectory. In
graph based methods such as Monocle (Trapnell et al.,

2014), Wanderlust (Bendall et al., 2014), Waterfall
(Shin et al., 2015) and TSCAN (Ji and Ji, 2016), a sim-
plified graph or tree is used as input. By using different
path-finding algorithms, these methods try to find a
path through a series of nodes. These nodes can corre-
spond to individual cells (Trapnell et al., 2014; Bendall
et al., 2014) or group of cells (Shin et al., 2015; Ji and
Ji, 2016) in the graph. SCUBA (Marco et al., 2014)
uses curve fitting to characterize the pseudotime tra-
jectory. Principal curves are used to model trajectory
and each cell is assigned a pseudotime according to its
low-dimensional projection on the principal curves.

One major drawback of these methods is the ab-
sence of a probabilistic framework. They only provide
a single point estimate of pseudotimes concealing the
impact of biological and technical noises.Campbell and
Yau (2016) have used the GPLVM where pseudotime
trajectories have been modelled by the latent variables.
They have used Markov Chain Monte Carlo (MCMC)
simulation to draw samples from the posterior pseu-
dotime distribution where each sample corresponds to
one possible pseudotime ordering for the cells with as-
sociated uncertainties.

The pseudotime estimation in the above methods is
unstructured lacking any physical or biological inter-
pretation of the space. These methods do not incorpo-
rate experimental covariates such as cell type or true
capture time, and may fail to uncover a specific struc-
ture of interest. As an example, in immune response,
after the combat with the infection is finished the nat-
ural course is to go back to a healthy state. Thus,
the expression profiles show a cyclic behaviour where
it is challenging to estimate a single pseudotime. Reid
and Wernisch (2016) have developed a Bayesian ap-
proach that uses GPLVM and impose a prior structure
on the latent dimension. The latent dimension in their
model is one dimensional pseudotime and the imposed
structure relates it to the cell capture time. This helps
the model not only to maximise some relevant statis-
tics but also to identify sample specific features such
as cyclic behaviour of cell cycle data. The pseudotime
points estimated by their model are in proximity to the
actual capture time and in the same scale.

2 Methods

The primary latent variables in the proposed method
are the pseudotimes. The expression profile of each
gene is modelled by a Gaussian process

yg = GP (0, k(t, t∗))
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where yg is the expression profile of gene g; and k(t, t∗)
is the covariance function between two distinct pseudo-
time points t and t∗. Thus, the expression profiles are
the functions of pseudotime and the covariance func-
tion imposes the smoothness constraint that is shared
by all genes.

The Bayesian GPLVM has the computational com-
plexity of O(GC3), where G is the number of genes
and C is the number of cells. To make the model com-
putationally tractable for large datasets, a sparse ap-
proximation has been incorporated in different models
(Reid and Wernisch, 2016). Sparse GP approximation
has the complexity O(GCM2) where M << C is the
number of auxiliary or inducing points. These induc-
ing points may or may not coincide with the actual
points. As M is chosen much smaller than C, sparse
approximation provides a great efficiency in terms of
computational time.

The computation of the log marginal likelihood
is mathematically intractable and MCMC meth-
ods (Campbell and Yau, 2016; Reid and Wernisch,
2016) have been employed for inference. However
their computational complexitity has motivated vari-
ational approaches (Damianou et al., 2015) that pro-
vide a lower bound on the likelihood at a fraction of
the computational cost. Reid and Wernisch (2016)
also use black box variational approaches that rely on
sampling to increase inference efficiency. However for
the Bayesian GPLVM an analytic exact bound exists
(Damianou et al., 2015) but the original derivation and
all currently available packages such as GPy (2012) as-
sume an uninformative prior. We modify the exact
bound to allow for informative priors

log p (Y ) ≥ Eq(t) [log p (Y |t)]−KL [q (t) ||p (t)]

where q (t) the variational distribution and p (t) =∏N
n=1N

(
tn|τn, σ2

t

)
the modified prior centered at the

capture time τn of cell n with prior variance σ2
t

We have implemented our approach in the GPflow
package (Matthews et al., 2016) whose flexible architec-
ture allows to perform the computation across multiple
CPU cores and GPUs. The source of the scalability of
our approach is therefore two-fold: model estimation
using an exact variational bound and implementation
on a scalable software architecture.

3 Results and Discussion

The performance of the proposed framework has been
investigated by analysing three different data sets from
three different organisms: whole leaf microarrays of
Arabidopsis thaliana (Windram et al., 2012); single
cell expression profiles of a human prostate cancer cell
line (McDavid et al., 2014) and single cell RNA-Seq
libraries of mouse dendritic cells (Shalek et al., 2014).

The proposed model has been compared with the
work of Reid and Wernisch (2016) in terms of model
fitting as well as the time required to fit the model.
As GPflow provides exact bound for variational ap-
proximation, the parameter estimation of the proposed

model shows robustness with respect to the validation
methods used to campare the models. Moreover, the
proposed method converges quickly by using a small
number of inducing points even for large data. The
proposed model outperforms the DeLorean approach
(Reid and Wernisch, 2016) in all aspects1,2,3. We also
demonstrate the flexibility of the model to infer higher-
dimensional latent spaces (Guo et al., 2010).

3.1 Infering withheld time points and
smooth pseudotime trajectories

Windram et al. (2012) examined the effects of Botrytis
cinera infection on Arabidopis thaliana, and time se-
ries contains 24 distinct capture time points. These 24
times points have been grouped into 4 separate groups,
each consisting of 6 consecutive time points, which have
been fed to the model for prior initialization. Figure 1
depicts the comparison of the proposed method to the
Delorean approach (Reid and Wernisch, 2016) for Ara-
bidopsis thaliana data. All the experiments have been
carried out by using the same experimental setup. The
Figure 1(Top) shows the best and average spearman
correlation between the actual capture time and the
estimated pseudotime for different number of inducing
points used. Both the best and average correlation val-
ues show that the proposed method has better conver-
gence for relatively smaller number of inducing points
than Delorean method. Figure 1(Bottom) depicts the
fitting time required by both models for different num-
ber of inducing points.

To verify smoothness of the predicted trajectory,
roughness statistics Rg (Reid and Wernisch, 2016) has
been calculated. The average Rg for different prior
initialization is 0.71 which is smaller than Rg 0.72 cal-
culated by Reid and Wernisch (2016).

3.2 Recovering cell cycle peak times

McDavid et al. (2014) examined the effect of cell cycle
on single cell gene expression and this work uses the
expression data from the PC3 human prostate cancer
cell line. The inference has been carried out by using
the top 56 differentially expressed genes in 361 cells. To
identify the cyclic nature of the cell cycle, the method
uses a periodic kernel function (MacKay, 1998). The
expression profiles of some selected genes over the es-
timated pseudotime are shown in Fig. 2. DeLorean
approach requires 7h 31m to fit the model for this data
while the proposed method uses 20 inducing points and
takes only 4m 45s to converge.

To evaluate the model's performance, estimated
peak times from the expression profiles fit by the
proposed model have been compared with the peaks
times defined by the CycleBase database (Santos et al.,

1Time indicated for DeLorean method is for 40 initializations
while the mentioned for the proposed model is for 1 initialization

2DeLorean Machine: DELL R815 server having 4 x AMD
6174 2.2 Ghz processors (12 cores each), with 128 Gb of 1333
MHz RAM memory

3Our Machine: Intel(R) Core(TM) i5-3570 CPU @ 3.40GHz,
Ram: 16 GB
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Figure 1: A comparision of performance and fit-
ting time between the proposed method and Delorean
method for Windram et al. (2012) microarray data.
(Top) Spearman correlation between the actual cap-
ture time and the estimated pseudotime for different
number of inducing points. (Bottom) Fitting time
required by the models for the same experimental se-
tups
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Figure 2: Expression profiles over estimated pseudo-
time for some selected genes from PC3 human prostate
cancer cell line. Each point corresponds to a particular
gene expression in a cell. The points are colored based
on cell cycle stages according to McDavid et al. (2014).
The circular horizontal axis (where both first and last
lables are G2/M) represents the periodicity realized by
the method in pseudotime inference. The solid black
line is the posterior predicted mean of expression pro-
files while the grey ribbon depicts the 95% confidence
interval. The vertical dotted lines are the CyclyBase
peak times for the selected genes.

2014). The root mean square error (RMSE) between
the estimated peaks and the CycleBased defined peaks
is 13.6 ± 0.4 which is smaller than the RMSE 14.5
calculated between the same quantities in Reid and
Wernisch (2016).
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Figure 3: The module score (Shalek et al., 2014) of core
antiviral cells over pseudotime. The two precocious
cells (plotted as triangles) have been placed in later
pseudotimes than the other cells of captured at 1 h. A
loess curve (solid blue line) has been plotted thorough
the data.

3.3 Correctly identify precocious cells

Shalek et al. (2014) identified a core antiviral gene
module expressed in LPS after 2-4 hours. They de-
fined two cells captured at 1 h which switched to this
group precociously. The inference process uses top 74
variationaly expressed genes from the clusters Id, IIIb,
IIIc, IIId. The time used by DeLorean method is 20m
while the proposed method takes 3m for the same num-
ber of inducing points. Fig. 3 shows the module score
(Shalek et al., 2014) of core antiviral genes over the
estimated pseudotime. Two precocious cells have been
assigned pseudotimes in the middle of 2 h group. Thus,
the model successfully simulates the concept that some
cells can progress across the differentiation (pseudo-
time trajectories) faster than others.

3.4 Pseudotime-branching inference

The model has been extended for 2-D latent spaces
and has been applied on the single cell qPCR data of
early developmental stages from multicellular organ-
isms (Guo et al., 2010). The gene expression profiles
of 48 genes was measured across 437 cells. Cells dif-
ferentiate from the single cell stage into three different
cell states in the 64 cell stage: trophectoderm (TE),
epiblast (EPI), and primitive endoderm (PE).

Both models with informative and non-informative
priors were examined. The informative prior (Figure 4)
on capture time helps with the identifiability of the
model as it aligns the first latent dimension (horizontal
axis) with pseudotime and the second latent dimension
(vertical axis) with the branching structure. The rank
correlation is also higher (0.95 vs 0.79) as well as the
log likelihood.
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(b) Informative prior

Figure 4: Latent space reconstruction without and with prior. The latter captures both developmental time
and branching structure (Guo et al., 2010). The cell stage and type labels are also shown.

4 Conclusion

Pseudotime estimation on single cell genomics faces a
number of challenges as many sources of variability in-
troduce a significant amount of statistical uncertainty
in the inference process. The proposed method uses a
sparse variational Bayesian GPLVM with an informa-
tive prior on the latent space. Four different datasets
have been used to examine the model’s suitability to
estimate pseudotimes. The model can be extended
to higher dimensional latent spaces where the inter-
action of pseudotime with other factors can be cap-
tured. We have demonstrated this capability on a
two-dimensional latent space where pseudotime is esti-
mated jointly with the developmental branching struc-
ture. In all cases, the model requires a small number
of inducing points a and less computation to generate
biologically plausible estimates compared to existing
approaches. Thus the scalability and flexibility of the
proposed method ensures its utility for analysing larger
datasets such as those generated from droplet-based
techniques.
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