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Large computational experiments involving parameter sweep applications (PSAs),
where a simulator acts much like a "black box", can be used for e.g. robustness
analysis of underlying models, uncertainty quantification, computational design, and
model exploration. Parameter sweeps involves scanning large regions in parameter
space and with complex models involving many parameters, such sweeps can become
massive. This makes it impossible for the modelers to manually analyze the results
and organize the data. To deal with this problem we need to develop efficient in-
frastructures and frameworks which can process PSAs in a more automatic fashion.
This involves intelligent ways to deploy, process and store the results from sweeps.
To make sense of the vast amount of unsupervised output we need to structure the
realizations into informative clusters so that the modelers can comprehend and an-
alyze the data with higher efficiency. We propose a methodology involving machine
learning technologies and associated workflows where the modelers act as a central
unit by interactively directing the PSA based on patterns learned from the data. By
providing the modelers with examples of realizations from clusters, they will be able
to associate them with labels according to their own preferences (figure 1). This kind
of active learning is a common approach within unsupervised problems[1, 5]. Further,
as the modelers discover interesting patterns the PSA can be guided towards partic-
ular parameter regions, i.e going from a coarse initial design of a parameter sweep to
a finer one in certain regions, according to the modelers interests. Importantly, this
guidance is based on the dynamic behavior in feature space, not distance in input
space. This process is referred to as active sampling within the area of surrogate
modeling [2].

Our main application is exploration of quantitative, dynamic models of biochem-
ical networks, i.e. with discrete, temporal data. Such models are typically modeled
as stochastic processes governed by the chemical master equation and simulated by
the Stochastic Simulation Algorithm (SSA) [4]. In practical modeling, exploration of
the parameters associated with the model are frequently used in order to discover un-
known properties of the underlying system and to assess the robustness of a hypothesis
to parameter variations. In projects where modeling is used exploitively to generate
new hypotheses of a pathway’s inner workings, one often starts off with an assumed
set of macromolecular interactions but little prior knowledge of kinetic parameters.
Due to the high levels of uncertainty in those parameters, the effort for modelers to
explore the parameter space can become overwhelming. For stochastic, highly non-
linear and high-dimensional models one often have to resort to naive global parameter
sweeps. Apart from the large computational requirements, the sheer amount of data
generated by such sweeps makes it hard to analyze and explore the results.
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Figure 1: Workflow of the envisioned smart parameter sweep applications (PSA). In the
user front-end (A), modelers can initiate a parameter sweep of their model by automatically
generating time series from the corresponding simulator. As the sweep progresses, time
series data (B) pass through the machine learning module (C) where features are being
extracted, followed by clustering of the newly represented data. Modelers are then provided
with examples from the clusters with the possibility to label the data. Information exchange
occur between (A) and (B) to further learn interesting patterns, for example by finding
discriminative features between different labels.

Our introductory approach for smarter parameters sweeps involves simulated tem-
poral data passing through a feature-layer to generate a collection of features as an
alternative representation of the data (figure 1 C). These features are generated from
implementations associated with e.g time series analysis and distribution statistics
taken from scientific literature[3]. For stochastic underlying models, the features
itself will be interpreted as stochastic variables. By selecting a metric to measure dis-
tance between vectors in the feature set we are the able to group similarly behaving
realizations after performing an agglomerative hierarchical clustering. Using features
opposed to the raw simulated temporal data have several advantages; it allows for
a more descriptive way of representing time series and it enables the presentation of
discriminative sub-features between different clusters of times series.

We suggest that this approach will allow the modeler to more quickly learn about
their system under study by sorting the data in parameter space according to the
essential behavior of the dynamics rather than the distance between parameter points
in Euclidean space. The modeler can then, according to their own preferences, label
clusters that are presented. This information can then as a next step be used in a
supervised algorithm, such as Support Vector Machines (SVM), to build a machine
learning model which can predict group membership of newly generated data.
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