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Introduction  

It is increasingly recognized that the successful treatment of cancer is hampered by genetic heterogeneity of the 

disease and a more personalized approach is needed. Differences in the genetic makeup between tumors can 

result in a different response to treatment (Burrell et al., 2013). As a result, despite the existence of a wide range 

of efficient cancer treatments available (Block et al., 2015), many therapies only benefit a minority of the 

patients that receive them, while they are associated with very serious side effects. Therefore, there is a great 

clinical need for tools to predict - at the moment of diagnosis - which patient will benefit most from which 

treatment. This requires the discovery of markers, like gene expression signatures, that are informative about 

treatment response.  

The first gene expression signature that was shown to successfully predict prognosis in cancer was a 70-gene 

breast cancer signature (Van ‘t Veer et al., 2002). In recent years, many more gene expression signatures that 

can distinguish molecular subtypes of cancer or predict a favourable prognosis have been published, for a wide 

variety of cancers. However, by definition, prognostic signatures predict survival irrespective of the treatment 

given. To aid in treatment decision we need to discover a predictive signature, i.e. a marker that can predict 

survival depending on which treatment is given.  

Building a classifier for predictive purposes poses a unique challenge, which is not encountered when inferring 

prognostic classifiers. Most methods for defining a prognostic classifier rely on a supervised learning approach.  

In these methods a label is defined for each patient based on their survival or some other outcome measure, 

like the risk of experiencing a relapse. The training procedure then focuses on predicting these labels as 

accurately as possible to ultimately produce a classifier that can predict outcome for a new patient. However, 

when building a predictive classifier we aim to predict whether a patient will have a better prognosis when given 

a certain treatment of interest as compared to a different treatment. This means that labels defined solely on 

survival data will be inadequate, since it is impossible to know whether a patient would have had a different 

outcome when given an alternative treatment. A patient with a favourable outcome when given the treatment 

of interest, may have responded as well to any other treatment. Conversely, a patient may have a shorter than 

average survival even when treated with the optimal treatment; any other treatment would have resulted in an 

even worse prognosis. The absence of predefined labels make existing methods for building gene expression 

signatures unsuitable for this problem and thus a novel approach is needed.  

To address this challenge we introduce a new algorithm, TOPSPIN (Treatment Outcome Prediction using 

Similarity between PatIeNts), that derives a classifier able to distinguish a subset of patients with improved 

treatment outcome from the treatment of interest, but not the comparator treatment. Uniquely, TOPSPIN 

integrates the process of defining labels and building a classifier, eliminating the need to predefine labels based 

on survival alone. The fundamental idea of our approach is that we can estimate a patient’s treatment benefit 

by comparing its survival to a set of genetically similar patients that received the comparator treatment. Patients 

with a large survival difference can then act as prototype patients: new patients with a similar gene expression 

profile should also benefit from receiving the treatment of interest. These prototype patients are simultaneously 

used to define the classifier and the labels.   

In this work we focus on Multiple myeloma (MM), which is a clonal B-cell malignancy that is characterized by 

abnormal proliferation of plasma cells in both the bone marrow and the extramedullary sites. Median survival 

is 5 years (Howlader, 2016). In the last two decades many novel therapies have been introduced for MM, 

resulting in an improved survival. However, response rates remain low and there is no clear indication what 

determines treatment response. This is complicated by the fact that MM is very heterogeneous, both between 

and within patients (Lohr et al, 2014). Especially in MM, predictive signatures could be of great benefit. 



Methods 

Data 

We pooled gene expression and survival data from three phase III trials: Total Therapy 2 (TT2, GSE2658), Total 

Therapy 3 (TT3, GSE2658) and HOVON-65/GMMG-HD4 (H65, GSE19784). In our analyses of the pooled data two 

treatment arms were considered: a bortezomib arm, which comprises the PAD arm from H65 and TT3, and a 

non-bortezomib arm, which comprises the VAD arm from H65 and TT2. Combined, these datasets include 910 

patients, for which 407 received bortezomib and 503 did not. We split the dataset in a training set (n = 606) and 

a test set (n = 304). This test set is not used at any point in the training procedure and acts as an independent 

validation set to assess the performance of the final classifier.  

Progression free survival (PFS) was used as outcome measure.  

Algorithm 

TOPSPIN aims to predict if a patient benefits or does not benefit from a certain treatment of interest based on 

the gene expression profile of the patient. In order to train this classifier, we split the training set into three 

equal folds (A, B & C). We first define a ranked list of prototype patients on fold A (Step 1) that exhibit a better 

than expected prognosis compared to a set of genetically similar patients that received the opposite treatment. 

In Step 2, a decision boundary around a selection of prototype patients is determined on fold B. Patients who 

lie within this decision boundary are expected to show a favourable outcome when receiving bortezomib and 

and make up class F. All other patients are considered class N and are not expected to benefit from receiving 

bortezomib. Because it is a priori unknown based on which genes patient similarity should be defined, Step 1 

and 2 are performed for a large number of functionally coherent gene sets obtained from the Gene Ontology 

annotation, yielding one classifier per gene set. Step 1 and 2 are repeated k times for all n gene sets, which 

ultimately results in n * k classifiers. In an approach based on the boosting principle, the individual classifiers are 

combined to construct a more robust final classifier. These classifiers are applied separately to the samples in 

fold C, which act as out-of-bag samples. Since across the repeats all samples are included in fold C this will give 

an independent classification per gene set for all patients included in the training dataset. The performance of 

a classifier is defined by the Hazard Ratio (HR) found between the two treatment arms within class F. Since not 

all the trained classifiers will be equally successful in identifying the subset of patients that benefits from the 

treatment of interest a threshold S is set in Step 3, which determines which classifiers will participate in the final 

classifier: a classifier is included only if its performance is below a certain HR. We base this threshold on a 50/50 

mixture of the performances obtained on fold B and fold C, the OOB samples. This defines a binary vector x for 

each patient, where xs has a value of 1 if the patient belongs to class F according to the sth classifier and 0 

otherwise. A classification score is defined for a patient i based on x:  
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with s being the number of classifiers contributing to the final classifier. On this score a threshold T is set, which 

determines whether a patient is to benefit from the treatment of interest. These steps are visualized in Figure 1 

and are described in more detail below.  

Step 1 - Prototype ranking on fold A 

For each patient receiving the treatment of interest, the treatment benefit is defined as  

𝛥𝑃𝐹𝑆𝑖  =  
1

𝑛
∑ (𝑃𝐹𝑆𝑖 −  𝑃𝐹𝑆𝑗) 𝑗∈𝑂 , 

where O is the set of the n most similar patients (based on euclidean distance) that did not receive the treatment 

of interest. We use n = 10. ΔPFS is only calculated for neighbor pairs where it is clear which patient experienced 

an event first; if both are censored, ΔPFS is not computed. To correct for the fact that a patient with a long  

 



 

survival time will, on average, have a large ΔPFS irrespective of its relative treatment benefit compared to 

genetically similar patients, we define the z-normalized zPFS score as: 

𝑧𝑃𝐹𝑆𝑖 =  
𝛥𝑃𝐹𝑆𝑖 − 𝜇(𝑅𝑃𝐹𝑆𝑖)

𝜎(𝑅𝑃𝐹𝑆𝑖)
, 

where RPFS is a distribution of 1000 random ΔPFS scores, obtained by calculating ΔPFS for randomly chosen sets 

O, i.e. determining treatment benefit with respect to random patients instead of genetically similar patients. 

Based on the zPFS score all patients in fold A that were given the treatment of interest can be ranked.  

Step 2 - Classifier definition on fold B 

Classifier Q is defined by a subset of z top-ranked prototypes along with a decision boundary defined in terms 

of the euclidean distance γ around a prototype. A patient is classified as class F when it lies within γ of any of the 

top z prototypes. The optimal values for z and γ are those resulting in the lowest Hazard Ratio (HR) in class F (the 

patient group in which the treatment of interest should have a better survival). We additionally constrain z and 

γ, such that class F comprises at least 20% of the dataset. The number of prototypes was restricted to 3 to 

prevent defining an extremely complicated classifier. The search grid for parameter γ was made dependent on 

the local density of the neighbors, and consisted of the sorted list of euclidean distances between the prototype 

and its neighbors. The optimal z and γ combination is chosen so that the HR in class F is minimal, with a 

preference for a HR associated with a p-value < 0.05.  

Step 3 – Set thresholds S and T 

A threshold S which determines which classifiers are included in the final classifier is optimized. Any classifier 

that resulted in a HR higher than S is excluded, with the options ranging from 1 to 0.3 in steps of 0.025. To utilize 

the information gained in Fold C, but prevent overtraining, the performance used is alternately the HR found on 

fold B and the HR found on fold C. For each possible threshold S, a threshold T is also optimized. This threshold 

T is set on the Classification Score to define class F in the final classifier. The combination of S and T that leads 

to the HR associated with the lowest p-value in class F, given that class F comprises at least 20% of the dataset, 

is chosen. 

 

 

 

 

Figure 1. Overview of the TOPSPIN algorithm 



Results  

The optimal threshold S found was 0.45, with a threshold T of 0.3. With this threshold S in total 14 150 classifiers 

were included in the final classifier. Applying the final classifier resulted in a HR of 0.43 (p = 1*10-4 ) in the training 

set within class F, based on the classification of the OOB samples. More importantly, when applied to the 

independent test set, a HR of 0.5 (p = 0.04) between the two treatment arms was found, demonstrating 

TOPSPINs ability to identify the subset of patients benefitting from bortezomib. The Kaplan Meiers for the 

training and test classification are shown in Figure 2. It is important to note that in class N HRs of 0.9 and 0.97 

were found in the training and test set, respectively. These patients did not experience any benefit from 

receiving bortezomib and could thus possibly have been spared the treatment and side effects.  

 

 

Conclusion  

Here we have demonstrated TOPSPIN ability to identify a subset of MM patients that benefit from the 

proteasome inhibitor bortezomib. TOPSPIN is however not specific for MM and can be used on any dataset with 

two randomized treatment arms and a continuous outcome measure. Considering the often low response rates 

combined with the serious side effects of current cancer therapies, TOPSPIN therefore offers an important step 

towards realistic personalization of cancer medicine.   
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Figure 2. a. Kaplan Meier of the optimal classification of the training set. b. Kaplan Meier of the optimal classification 

of the test set. 
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