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1 Introduction
Despite tremendous advances in the pharmaceutical industry, many patients worldwide do not respond to the first medication
they are prescribed. Personalized medicine, an approach that uses patient’s own genomic data, promises to tailor the treatment
program to increase the probability of positive response. Most recent computational research in drug response prediction was
motivated by the public release of high throughput drug screening in cell lines. The greatest advantage of cell lines is that it is
relatively inexpensive to test them with thousands of drugs providing a rich basis for learning predictive models. This screening
task was undertaken by several large consortia and pharmaceutical companies resulting in publicly available datasets of various
sizes, most notably: NCI-60 dataset with 60,000 compounds tested on 60 cell lines1, Genomics of Drug Sensitivity in Cancer
(GDSC) with 138 drugs2 across 700 cancer cell lines, and the Cancer Cell Line Encyclopedia (CCLE)3 with 24 drugs tested on
a panel of >1000 cell lines. Gene expression and drug response data for these cell lines are now publicly available.

The problem with drug sensitivity data is that it does not help to understand what happened to a cell line mechanistically
(biologically) in response to a drug. To combat this problem, a database of perturbations was generated4. This database contains
over 16,000 experiments showing how the expression of 1000 (landmark) genes changes in response to a drug (gene expression
is recorded before and after drug application for many drugs). This information allows to assess the biological change in the
cell line but does not directly translate into response/non-response. Combining response and perturbation data is expected to
ultimately yield a better and more biologically relevant model of drug response, though likely more experiments will be needed,
since all drugs are tested only on several different cell lines.

In this paper we present a new Perturbation Variational Autoencoder (PertVAE), that learns latent representation of
the underlying gene states before and after a drug application. PertVAE is a deep generative model based on Variational
Autoencoder (VAE)5, 6. To fit generative and approximate inference distributions for our model, we use a combination of
Stochastic Gradient Variational Bayes5 and Inverse Autoregressive Flow7. We tested PertVAE on 19 drugs, predicting post
treatment gene expression. The highest number of cell lines tested across the drugs was 56, which is a very small sample size
for training complex models. Nevertheless, PertVAE can at least partially predict drug perturbations for 5 out of 8 drugs for
which there is the most data available. Furthermore we found that the correlation of the reconstruction data is better when the
size of the latent space is relatively small.

We believe that this is a promising result showing that even with a small sample size, deep models are able to learn some
level of reconstruction of post-treatment gene expression. The next step would be to combine pre- and predicted post-treatment
data together with drug sensitivity to predict drug response. While in this work we focused on analyzing reconstruction accuracy
of post treatment data, our framework is easily extendible to that integration scenario.

2 Methods
We propose a Variational Autoencoder approach for modeling drug perturbation effects, i.e. given gene expression of a cell line
before the drug is applied (pre-treatment gene expression), we are aiming to predict gene expression after the drug is applied
(post-treatment state). To this end we propose a deep generative model, Perturbation VAE (PertVAE).

Perturbation Variational Autoencoder (PertVAE) is an unsupervised model for drug-induced gene expression perturbations,
that embeds the data space (gene expression) in a lower dimensional latent space. In the latent space we model the drug-induced
effect as a linear function, which is trained jointly with the encoder and decoder of the embedding.

We fit PertVAE on “perturbation pairs” [x1,x2] of pre-treatment and post-treatment gene expression with shared stochastic
embedding encoder qφ x→z and decoder pθ z→x . The original dimension of each vector x is 903 genes. Additionally we use
unpaired pre-treatment data (with no know post-treatment state) to improve learning of the latent representation. The graphical
representation of PertVAE model is shown in Figure 1.
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Figure 1. Perturbation VAE: (a) Factorization of the generative distribution p, (b) Factorization of the approximate posterior
distribution q. Note, we use the generative pθ z1→z2

in case x2 is not observed.

Joint distribution. Our Perturbation VAE models joint p(x1,x2,z1,z2), which we assume to factorize as:

p(x1,x2,z1,z2) = p(x1|z1) · p(x2|z2) · p(z2|z1) · p(z1) (1)

Generative distributions p. Perturbation VAE’s generative process factorization consists of the following distributions:

p(z1) = N (0,I) (2)

pθ z1→z2
(z2|z1) = N

(
z2|µz2

= fθ (z1),σ z2 = exp fθ (z1)
)

(3)

k ∈ {1,2} : pθ z→x(xk|zk) = N
(

xk|µxk
= fθ (zk),σxk = exp fθ (zk)

)
(4)

The parameters of these distributions are computed by functions fθ , which are neural networks with a total set of parameters
θ . For brevity we refer to these parameters as θ instead of more specific subsets θz→x or θz1→z2 when such level of detail
unnecessarily clutters the notation.

We constrain the mean function in pθ z1→z2
to be a linear function fθ z1→z2

(z1) of the following form:

fθ z1→z2
(z1)≡ z1 +Wz1 +b (5)

with W and b initialized close to zero such that fθ z1→z2
(z1) starts as an identity function. We found that together with L2

penalization this formulation improves stability and generalization of the model.

Approximate posterior q. Depending on the type of the data, we assume the approximate posterior q with a set of parameters
φ to factorize as:

perturbation pairs: qφ (z1,z2|x1,x2) = qφ x→z(z1|x1) ·qφ x→z(z2|x2) (6)

pre-treatment singleton: qφ (z1,z2,x2|x1) = qφ x→z(z1|x1) · pθ z1→z2
(z2|z1) · pθ z→x(x2|z2) (7)

Analogously to the shared generative pθ z→x distribution, also qφ x→z(zk|xk) is shared for both k ∈ {1,2}. Here, instead of
directly using a standard diagonal Gaussian as the approximate posterior

k ∈ {1,2} : qφ x→z(zk|xk) = N
(

zk|µzk
= fφ (xk),σ zk = exp fφ (xk)

)
(8)

we apply two steps of “LSTM-type” Inverse Autoregressive Flow (IAF)7 updates to facilitate a richer family of approximate
distributions.

Fitting θ and φ parameters. We jointly optimize the generative model θ and variational φ parameters to maximize Evidence
Lower Bound (ELBO) of the data:

NP

∑ log p(x1,x2)+
NS

∑ log p(x1)≥ ELBOPertVAE (9)

ELBOPertVAE =
NP

∑LP (x1,x2;θ ,φ)+
NS

∑LS (x1;θ ,φ) (10)
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which is a sum of the evidence lower bound of NP perturbation pairs and the lower bound of NS unpaired “singleton” examples
that we leverage to train the latent space Variational Autoencoder as well. The individual per-example lower bounds LP and
LS take the following form:

LP(x1,x2; θ ,φ) = Eqφ (z1,z2|x1,x2)

[
log pθ (x1,x2,z1,z2)− logqφ (z1,z2|x1,x2)

]
(11)

= Eqφ (z1|x1) [log pθ (x1|z1)]−DKL
[
qφ (z1|x1)||p(z1)

]
+ (12)

+Eqφ (z2|x2) [log pθ (x2|z2)]−DKL
[
qφ (z2|x2)||pθ (z2|z1)

]
LS(x1; θ ,φ) = Eqφ (z1|x1) [log pθ (x1|z1)]−DKL

[
qφ (z1|x1)||p(z1)

]
Using Stochastic Gradient Variational Bayes (SGVB)5, 6 it is possible to backpropagate through ELBOPertVAE and we use
Adam8 to compute gradient updates for both θ and φ parameters. As we use IAF to model qφ (zk|xk), the Kullback–Leibler
divergence DKL cannot be computed numerically and therefore we use a Monte Carlo estimate. Additionally we allow “free
bits” in DKL to mitigate the problem of overly strong prior causing the optimization to get stuck in bad local optima7.

3 Datasets
We test our methods on a panel of 19 drugs for which there are perturbation experiments available. These 19 drugs were also
used in recent AstraZeneca-Sanger DREAM Challenge and therefore we use it as a representative sample of anti-cancer drugs.

The Library of Network-Based Cellular Signatures (LINCS) consortium screened perturbation effects that drugs have on
gene expression of L1000 landmark genes in cancer cell lines4. The L1000 perturbation dataset is relatively sparse, for the 19
drugs, only up to 56 different cell lines were screened, albeit at various concentrations and with many biological replicates
(as high as 15). In our results we use measurements at the highest drug concentration and all the biological replicates of such
experiments. In cross-validation of our models we use cell-line-wise splitting so that the biological replicates for a particular
cell line are in the same data fold.

Additionally, we use the union of ∼1300 cell lines in Genomics of Drug Sensitivity in Cancer (GDSC)2 and the Cancer Cell
Line Encyclopedia (CCLE)3 for which there are no know post-treatment states in an unsupervised fashion, to improve training
of our gene expression latent embedding. We obtained these datasets using PharmacoGx R package9.

4 Results
Architecture. The encoder’s input size corresponds to the number of landmark genes (> 1000) on the input, and is followed
by two hidden layers with 500 and 300 units, respectively. From the last hidden layer the parameters of initial Gaussian
distribution µzk

and σ zk are computed together with 200 hidden units on which the subsequent Inverse Autoregressive Flow is
conditioned. We use 2 steps of IAF, each with one hidden layer of 300 units. Architecture of data decoder mirrors that of data
encoder, but without IAF. We use ELU activation function10 and Weight Normalization11.

The presented experiments are evaluated in 10-times randomized 5-fold cross-validation and we report the average metric
across these 50 data splits. The models were fitted independently for each of the 19 drugs, but with the same hyperparameters.

4.1 Modeling gene expression
Variational Autoencoder5 is an expressive non-linear model, while PCA has the best reconstruction loss among linear models.
To evaluate how well a VAE with our architecture can model gene expression, we fitted a VAE with various number of stochastic
latent variables and compared its reconstruction to reconstructions by PCA with equivalent number of principal components.
As the measure of reconstruction quality we used Spearman’s ρ between reconstruction mean and the observed gene expression.
We plot the results in Figure 2. A Variational Autoencoder with the above described encoder/decoder architecture does better
for small latent spaces (< 20) after which it seems to overfit compared to PCA.

We chose the encoder/decoder architecture and latent space of 100 stochastic units for our PertVAE. We expect that PertVAE
then has enough expressive power and capacity to not just model gene expression, but also find such a latent space in which a
drug perturbation effect can be modeled as a stochastic linear function.

4.2 Predicting drug-induced change
We trained a PertVAE for each drug independently with the goal of predicting drug perturbation effects. That is, we optimized
the ELBOPertVAE and stopped training when perturbation prediction loss started to increase on the validation set.

To evaluate the prediction performance we computed Spearman’s correlation ρpred,pert between the mean of predicted gene
expression distribution Eqφ (z1,z2|x1)[pθ (x2|z1)] and the true post-treatment gene expression in the test set. We compare this
correlation to the correlation ρrec,pert between the mean of pre-treatment reconstruction distribution Eqφ (z1|x1)[pθ (x1|z1)] and
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Figure 2. PCA and VAE reconstruction quality
comparison for varying latent space size.

Table 1. Perturbation VAE prediction results with latent space
size 100.

drug # cell lines ⍴⍴ rec,pert ⍴⍴ pred,pert p-value
olaparib 56 0.529 0.517 1
selumetinib 56 0.457 0.466 0.004
vorinostat 56 0.475 0.584 7.9E-08
bortezomib 51 0.444 0.508 1.1E-11
navitoclax 51 0.505 0.485 1
SN-38   51 0.433 0.509 3.8E-14
temsirolimus 51 0.488 0.504 0.001
tipifarnib 51 0.538 0.536 0.713
GDC-0941 19 0.488 0.494 0.361
gefitinib 19 0.545 0.541 0.795
NU-7441 19 0.502 0.502 0.548
saracatinib 19 0.517 0.514 0.682
vinorelbine 14 0.51 0.504 0.659
docetaxel 13 0.524 0.509 0.981
paclitaxel 13 0.465 0.443 1
afatinib 12 0.481 0.472 0.562
etoposide 12 0.49 0.481 0.745
doxorubicin 8 0.254 0.311 0.016
linsitinib 6 0.502 0.5 0.628

the true post-treatment gene expression. Note, that in training the “drug effect” mean function is initialized close to identity. If
PertVAE would either underfit or overfit on the training set, we would expect ρpred,pert to be no larger than ρrec,pert. Therefore
we calculate Mann-Whitney single-sided test with the alternative hypothesis H1 = ρrec,pert < ρpred,pert on the results of our
10-times randomized 5-fold CV. The average correlation values and p-values of the statistical test are in Table 1, showing that
PertVAE can at least partially predict drug perturbations for 5 out of 8 drugs (p-value ≤ 0.001) for which the data set consists
of perturbation experiments in at least 50 unique cell lines.
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