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Abstract—It has been reported in multiple cancers that certain set of gene mutations tend not to occur concurrently in the same
patient. This mutual exclusivity pattern hints at a functional relation and can help uncover cancer-driver alterations. We address the
problem of discovering mutually exclusive mutation gene sets through mining negative association rules. Our proposed algorithm,
MEMNAR, efficiently mines for negative association rules in patient mutation data and constructs mutually exclusive gene sets based
on these extracted rules with high accuracy. We also define and detect more complex mutual exclusivity patterns that have not been
addressed in earlier approaches. Evaluations on simulated data sets demonstrate that MEMNAR can discover mutual exclusive gene
sets faster with improved accuracy compared to the state-of-the-art methods. When we apply MEMNAR on breast cancer, we identify
several mutually exclusive gene sets that are biologically relevant and some of which have not been reported in the literature.

1 INTRODUCTION

Cancer genomes harbor many genomic alterations.
However, only a small portion of these act as “drivers”
while the rest are "passengers” with no significant effect
on cancer. Distinguishing driver and passenger mutations is
critical for understanding mechanisms underlying cancer.
Candidate driver genes are typically determined by con-
ducting statistical tests of mutational frequency [8]. How-
ever, individual tumors exhibit a high level of diversity with
different combinations of mutations, limiting the utility of
statistical tests that detect drivers based on recurrence. The
combinatorial patterns of mutations can help understanding
the functional relations of genes in cancer. One method of
identifying driver genes is to investigate the frequently ob-
served patterns of mutations. One such interesting pattern
is mutual exclusivity, where a set of mutated genes rarely
co-occurs in the same tumor.

The computational problem of discovering mutually ex-
clusive sets are addressed in the literature with different
approaches [11], [1], [2], [10], [7], [15], [9]. Some of these
methods are limited by computational efficiency and some
suffer from high false discovery rate. In this work, we
propose a new approach wherein we formalize the prob-
lem of finding mutually exclusive gene sets as a negative
association rule mining problem. We present an algorithm,
MEMNAR that exploits efficient data structures and prun-
ing strategies developed for frequent item set mining.

As a second contribution, we define a novel mutual
exclusivity pattern of the following form: a mutation in a
gene, say X, induces that a set of genes, say Y and Z, are
not simultaneously mutated with gene X. A patient that is
mutated in X and Y but not Z, or a patient mutated in X
and Z but not Y supports this pattern; while a patient that
contains all three X, Y and Z mutations contradicts with the
pattern. MEMNAR discovered such novel patterns in breast
cancer (BRCA) mutation data.
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Our results on simulated data demonstrate that MEM-
NAR can outperform the compared state-of-the-art ap-
proaches in terms of accuracy and runtime. Applying MEM-
NAR on BRCA somatic mutation data verifies known mu-
tually exclusive sets as well as discovers several other novel
mutually exclusive sets.

2 METHODS
2.1 Association Rules

Positive and negative association rules are used in mar-
ket basket analysis, where the aim is to detect interest-
ing relations in large customer transactions [14]. Positive
association rules aim at finding products that are often
bought along with other products. In contrast, a negative
association (or “disassociation”) rule looks for item sets that
are rarely bought with other items, i.e. “Customers that buy
Coke are unlikely to buy Pepsi as well”. Below, we formally
define these concepts in the context of cancer mutation data.

Let M = {my, ma, ...,mn} be the set of N distinct genes
that are found to be mutated in a patient cohort, D. Let
T; C M be the set of mutated genes in patient i. Support of
a mutation set, X € M, supp(X), is defined as the fraction
of patients with mutations in X. A negation of a mutation
set is denoted as =X and indicates the absence of all the
mutations in X.

A positive association rule is of the form X — Y, where
X)Y € M and X NY = ¢. X is the antecedent of the
rule and Y is the consequent of the rule. The association’s
strength is measured with its support and confidence and with
high statistical significance. The support of a rule X — Y is
defined as the percentage of patients that harbor mutations
in genes of X and Y : supp(X — Y) = supp(X UY). On
the other hand, confidence represents the fraction of patients
with mutations in Y among those that have mutations in the
genes of X it is the conditional probability of observing ¥
given X: Confidence, c¢(X — Y) = supp(X UY)/supp(X).

A negative association rule includes at least one negative
mutation set either in the antecedent or the consequent of
the rule [16]; it can take one of these forms: X — Y,



-X — Y or =X — Y. Among these rules we are only
interested in finding rules of the form X — =Y due to its
relation to mutual exclusive sets as described in the next
section. The support of this negative association rule can
be calculated from the positive sets: supp(X — —Y) =
supp(X) — supp(X UY).

2.2 Mutual Exclusivity and Negative Associations

Consider a mutual exclusive mutation set with three
genes m;, m; and my. If a tumor harbors one of these genes
mutations, it does not contain the other two mutations. Such
a mutual exclusivity pattern can be represented with the
following three negative association rules:

{mi}t — {—~my, -my}
{m;} — {-ms, -my}
{my} — {=mi, —m;}

The first rule states that if m; is present in a patient,
neither m; nor my, is likely to be present in the patient.
If dataset includes these three negative rules with high
support and confidence, then we can conclude that there
is a mutual exclusivity pattern among the three genes. We
term such negative rules as complimentary rules. In general,
if there are k complimentary rules for k different mutated
genes, the k genes form a mutually exclusive gene set.

We also introduce the following more complex mutual
exclusivity pattern that has not been studied in the liter-
ature: if a specific mutation is present in a patient tumor,
certain mutations can still occur but not simultaneously. For
example, a patient with mutation m; and m; but not with
my, fits this pattern, but a patient with all three mutations
does not. For a three gene set, this mutual exclusivity pattern
corresponds to a single negative association rule of the form:
{m;} = ={m;, my}.

2.3 MEMNAR Algorithm

Mining for negative association rules is a challenging
task. The absence of mutations in a patient is frequently
encountered and their combinations lead to an exponential
number of negative associations rules, most of which are
indeed uninteresting. There are a few methods developed
for mining negative association rules [3], [16], [13], [18].
Our method is closest to PNAR [3] in the way it generates
bigger items; however, PNAR does not discover the first
type of rules discussed in the previous section. The steps of
MEMNAR are as follows and it is illustrated in Figure 1:

1) Generate all positive frequent mutation sets, insert
them in P. A frequent mutation set is considered
frequent if its support is above a minimum support
threshold. The subset of P with set size 1 will be
referred as P;.

2) Negate all mutation sets in P; and put the frequent
negated items in Ny which is set of frequent nega-
tive item sets with only one item.

3) Combine all pairs in P; and NV; to generate mutation
sets that contain one positive and one negative
mutation. Insert the frequent ones in PNy ;.

4) Join the generated frequent item sets in part 3 to get
bigger item sets; filter them to get PN; o and PN, ;
which include frequent item sets with 1 positive and
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2 negative mutations and frequent item sets with 2
positive and 1 negative mutations, respectively. This
joining and filtering operation is defined in the next
section.

5) Keep joining and filtering item sets inside each set
to generate bigger item sets called PN, , where p
is the number of positive mutations in the item set
and n is the number of negative mutations in it.

6) Generate all valid positive and negative association
rules. A valid rule should have support, confidence
and significance bigger than preset thresholds.

7) Generate mutual exclusive gene sets by combining
complimentary valid rules.

We generate the positive frequent mutation sets in Step
1 using Frequent-Pattern Tree algorithm due to its effi-
ciency [6]. In Steps 3 and 4, the downward-closure (anti-
monotonicity) property of support is used, namely, if a set
is frequent all of its subsets should be frequent. Then after
generating 2-length mutation set, we form bigger item sets
by joining smaller item sets, as discussed in the next section.

2.3.1 Positive and Negative Join

In Steps 4 and 5 of the algorithm we merge smaller
mutation sets to get larger frequent mutation sets, we adapt
the methodology introduced in Cornelis et al. [3]. There
are two kinds of joining operations, positive join increases
the positive subset of the mutation set, we call this the
positive part, and negative join that increases the size of the
negative part. For the positive join operation, the following
criteria should be satisfied: i) the length of both mutation
sets should be the same, ii) the negative parts should be
identical, iii) their positive parts should differ in only one
item and iv) the union set of the positive parts should also be
frequent. Negative join has a similar criteria: i) for two sets
to be merged with the negative join operation, the length
of the mutation sets should be the same, ii) they should
differ in only one item in their negative part, iii) their sets
in the positive parts should be identical. In negative join, in
addition to these conditions, we also check if the mutations
that exists in one set but not in the other set could form
a mutual exclusivity pattern as well by checking if they
exist in PN ;. This additional criterion ensures that all the
mutations will eventually form a mutual exclusive set. For
example suppose that we want to negative join {mq, "ms}
with {m1, -mg}, their positive parts are identical and they
only differ on one item in their negative part. Thus, we check
if {mga, -mg} and {-mgy, ms} are in PNy ; and if they are
frequent, we join these two item sets to get {m1, ~ma, =ms}.

2.3.2 Filtering Mutation Sets

In step 5 of the algorithm we filter generated mutation
similar to Apriori algorithm and PNAR algorithm based on
support. However, to be able to find rare mutations, we set
the support threshold very low and introduce additional
filtering strategies. Firstly, we require the rule generated
from mutation set to satisfy a significance lower bound.
Secondly, if the confidence of the rule corresponding to
the mutation set is not above a preset confidence threshold
this set will not contribute in negative join function because
confidence is monotonic in negative join. Additionally, we
filter the mutation sets, which cannot lead to a mutually
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Fig. 1: Overview of MEMNAR.

exclusive set. For this we check if the mutation set leads to
complimentary rules as defined in Section 2.2. For example,
for item set {m1, =ma, -ms}, we require if {mg, ~mq, "ms}
and {ms, —mq, “mz} to be frequent, and if they are not, they
are pruned.

2.3.3 Generating rules

The negative association rules of the form, X — <Y, are
created such that the positive set constitutes the antecedent
and the negative set constitutes the consequent of the rule.
For example, from mutation set {mjy, ma, ~ms, -my}, the
following rule will be generated: {m1,mz2} — {-ms, =mq}.

2.3.4 Assessing statistical significance

We assess the significance of a rule by calculating the z-
score. For this we calculate the x? statistic as described in
[5] and calculate the z-score based on x? statistic:

Vné(X — YY)

V/2supp(X) supp(~X )supp(Y)Supp(ﬁY)(l)

2(X = Y) =

where ¢ is the leverage for a rule and it is defined as:
§(X = ~Y) = supp(X U~Y) — supp(X)supp(—Y) (2)

2.3.5 Generating mutual exclusive sets

To find the first type of mutual exclusivity sets as dis-
cussed in Section 2.2, we look for k£ valid complementary
negative association rules among £ genes. If they all exist,
we form a mutual exclusive set. The z-score and confidence
for the set are calculated by averaging the z-scores and
confidences of the rules forming it. For the second type
of mutual exclusivity pattern, the negative association rules
with high z-scores are found that fits the pattern. The rule’s
z-score is considered as the mutual exclusive set’s score.

3 RESULTS
3.1 Results on simulated data

We repeated the simulated experiments in MEGSA [7]
and compared MEMNAR with three algorithms: MEGSA
[7], Mutex [1], and Multi-Dendrix [9]. A mutation matrix of
54 genes and 500 patients is generated. A mutual exclusive
set of 4 genes is implanted in the patient mutation data;
the coverage of these mutual exclusive sets is varied in
assessing the performance. The background mutation rate
for simulated genes is set to 1%. Two settings is used: i) in
the balanced setting mutual exclusive mutations are equally
distributed among patients, ii) in the unbalanced setting,
one mutation covers more patient than the remaining three
with the proportion 3:1:1:1. The mutations in the remain-
ing 50 genes were randomly distributed. These genes are
divided into 5 groups with frequencies 1%, 5%, 10%, 20%
and 30%. Each algorithm is evaluated based on whether it
can find the simulated mutual exclusive gene set as the top
ranked mutual exclusive set. The simulation is repeated 100
times in each case.

Figures 2 A and B display simulation results for balanced
and unbalanced cases respectively. MEMNAR outperforms
all the methods in both settings. We also compared runtimes
(Figure 2 C ). Here Multi-Dendrix algorithm was too slow
to complete the analysis, so it is not shown. MEMNAR is
much faster than both MEGSA and Mutex.

3.2 Mutual Exclusive Gene Sets in Breast Cancer

We applied MEMNAR on breast cancer (BRCA) somatic
mutation data obtained from TCGA and post-processed
by [9]. MEMNAR found 21 significant (p-value < 0.005)
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gene is mutated in the patient. The numbers next to genes report the number of patients the gene is mutated. D or A next
to gene name indicates that it is a copy number variation with deletion or amplification type.

mutually exclusive mutation sets, which includes all the [7]
significant mutual exclusive sets found previously by other
methods. The top set includes TP53, GATA3, CDHI1, and
CTCEF (Figure 3 A), which is altered in 54.83% of the BRCA
samples. All of these genes have been reported as driver [8]
mutations for breast cancer [17], [12], [4]. The set with TP53,
CDH1, GATA3 and MAP3K1/MAP2K4 (Figure 3 B), be-
longs to MAPK/ERK pathway, which is known to be driver  [9]
pathway[17]. The set that comprise of PIK3CA, PTEN(D),
MCL1(A), AKT1 (Figure 3 C) was not found before by any
de novo methods and is interesting as the genes participate in
to Jak-STAT signaling pathway. As an example of complex
mutual exclusive rule, that states that when PIK3CA is mu-
tated in a patient, ERBB2(A) and MIR21(A) show a mutual
exclusive relation (Figure 3 D).
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