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Single-cell RNA-seq (scRNA-seq), a recent technology
that combines efficient RNA amplification with high
throughput sequencing, has revolutionised our understanding
of transcriptome variability among cell population. It has
profound implications both fundamental and translational, for
example, in dissecting tumour heterogeneity (1). However,
intrinsic limitations of scRNA-seq, stemming from the minute
quantity of initial RNA retrieved from single cells, have
prevented its application to dissect variability in RNA splicing,
as methods from bulk RNA-seq cannot handle the low
coverage and high drop-out rates of scRNA-seq.

Here we present BRIE (Bayesian Regression for Isoform
Estimation), a Bayesian hierarchical model which pools
genetic and expression information to perform robust splicing
quantification from scRNA-seq data. BRIE consists of two
modules: a likelihood part (bottom part of Fig 1) which
uses the scRNA-seq data (aligned reads) within a mixture
model approach to isoform estimation (as used in standard
methods such as MISO (2) and Cufflinks (3)). The likelihood
module is coupled with an informative prior distribution in
the form of a Bayesian regression model, where the prior
probability of inclusion ratios is regressed against sequence-
derived features (upper part of Fig 1). This exploits the fact
that splicing events are highly predictable from sequence (4)
to help quantification when data is lacking. Importantly, the
prior distribution can be learned across multiple single cells,
thus transferring information across the whole experimental
design.

BRIE model has been implemented as a standard
Python package, which is freely available at
http://github.com/huangyh09/brie. The full
manuscript is available on bioRxiv (5).

This architecture effectively enables BRIE to
simultaneously trade-off two tasks: in the absence of
data (drop-out genes), the informative prior provides a way
of imputing missing data, while for highly covered genes
the likelihood term dominates, returning a mixture-model
quantification. For intermediate levels of coverage, BRIE uses
Bayess theorem to trade off imputation and quantification.

We validate BRIE on both simulated and real scRNA-seq
data sets, showing that BRIE yields reproducible estimates
of exon inclusion ratios in single cells. With the simulated
RNA-seq data, we first assessed the performance of BRIE
with different coverage levels, and see that the use of
an informative prior in BRIE can bring very substantial
performance improvements at low coverage, with a gain of
almost 20% in correlation between estimates and ground truth
in RPK=25. We also mimicked the drop-out events with the
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Figure 1. A cartoon of the BRIE method for isoform estimation. BRIE
combines a likelihood computed from RNA-seq data (bottom part) and an
informative prior distribution learned from 735 sequence-derived features
(top).

parameters estimated from real single cell experiments. Again
with the simulated data, we see that if drop-out happens
(namely no reads sequenced for expressed genes), BRIE
can produce a good imputation of the isoform usage simply
by taking the mean of the informative prior learned from
sequence features (Pearsons R: 0.6∼0.7).

To further assess BRIE’s performance on real scRNA-
seq data, we used 96 scRNA-seq libraries from individual
HCT116 human cells from the benchmark scRNA-seq study
of Wu et al (6) (see Methods for details). Importantly, a
bulk RNA-seq data set in the same conditions was also
obtained from one million cells. Figure 2 shows that BRIE
clearly outperforms all other methods by a large margin,
both in terms of correlation between estimates from different
single cells (Fig 2f), and in terms of correlations between
estimates from individual single-cells and bulk (Fig 2c).

1



0.0 0.2 0.4 0.6 0.8 1.0
PSI, bulk cells

0.0

0.2

0.4

0.6

0.8

1.0

PS
I, 

si
ng

le
 c

el
l

A DICEseq: bulk vs single cell

R=0.548

0.0 0.2 0.4 0.6 0.8 1.0
PSI, single cell 2

0.0

0.2

0.4

0.6

0.8

1.0

PS
I, 

si
ng

le
 c

el
l 1

D DICEseq: between single cells

R=0.483

0.0 0.2 0.4 0.6 0.8 1.0
PSI, bulk cells

0.0

0.2

0.4

0.6

0.8

1.0

PS
I, 

si
ng

le
 c

el
l 1

B BRIE: bulk vs single cell

R=0.835

0.0 0.2 0.4 0.6 0.8 1.0
PSI, single cell 2

0.0

0.2

0.4

0.6

0.8

1.0

PS
I, 

si
ng

le
 c

el
l 1

E BRIE: between single cells

R=0.861

Cufflinks
Census

RSEM
Kallisto MISO

DICEseq BRIE
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n'

s 
R

C bulk vs single cell

Cufflinks
Census

RSEM
Kallisto MISO

DICEseq BRIE
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n'

s 
R

F between single cells

Figure 2. BRIE improves splicing estimates by using sequence features. (A-C) Pearson’s correlation between between bulk and single cells on exon inclusion
ratio ψ in HCT116 cells. Scatter plot of ψ estimates by DICEseq (A), or estimated by BRIE (B). Box-plot for all methods (C) in 96 cells. (D-F) Pearson’s
correlation between single cell pairs. Scatter plot of ψ estimates by DICEseq (D), or estimated by BRIE (E). Box-plot for all methods (F) in 4,608 cell pairs.

Example scatter plots for both comparisons are given in Fig 2e
and 2b, clearly showing very consistent predictions. Notably,
the performance of other methods was strongly degraded by
the inability to handle the large drop-out rates (see Fig 2a
and 2d for DICE-seq, where many estimates of splicing are
centred around the uninformative prior value of 0.5). The
high correlation between bulk and scRNA-seq predictions is
particularly remarkable, as the analysis of the two data sets is
not done with a shared prior.

BRIE can also be used for differential splicing detection
across different data sets. To do so, we compute the evidence
ratio (Bayes factor, BF) between a model where the two
data sets are treated as replicates (null hypothesis) and an
alternative model where the two data sets are treated as
separate. We use the Savage-Dickey density-ratio approach
and relax it in order to obtain more robust estimates (see
original preprint (5)).

To estimate a background level of differential splicing
between identical cells, we considered again the 20 single
cell HCT116 libraries from Wu et al (6), and compared all
possible pairs of cells. Figure 3a shows the fraction of genes
called as differentially spliced at different BF thresholds in this
control experiment; as we can see, this number is always very
small, and around 1% at the normally recommended threshold
of BF=10. This level of background calling could be partly
attributed to intrinsic stochasticity or to residual physiological
variability that was not controlled for in the experiment,
such as cell cycle phase. As an additional comparison,
we considered two bulk RNA-seq methods for differential
splicing, MISO and the recently proposed rMATS (7). Both
methods could only call a negligible number of events, far
fewer than the expected number of false positives, confirming

that bulk methods are not suitable for scRNA-seq splicing
analysis.

We then considered a mouse early development scRNA-
seq data set (8), and compared the single cell transcriptomic
profiles from cells from mouse embryos at 6.5 and 7.75
days. We compared both the profiles of individual cells at the
same and different time points; the results are summarised
in Figure 3b. Comparing individual cells at 6.5 days yielded
approximately 1% of events called as significantly differential
(BF≥10) at 6.5 days. Comparing this result with our
investigation of HCT116 cells suggests that murine cells at
6.5 days are still similar to a homogeneous population, from
the splicing point of view. The percentage nearly doubled
at 7.75 days, suggesting that differential splicing becomes
more widespread at this later stage of differentiation. A
similar fraction of exon skipping events were differentially
called between cells at 7.75 days and cells at 6.5 days.
Figure 3c shows the example of DNMT3B, a regulator of
DNA methylation maintenance, which is known to undergo
functionally relevant alternative splicing (9). DNMT3B
exhibited differential splicing between 7.75 days and 6.5 days
in 153 out of 400 comparisons between individual single cells,
clearly highlighting the strong differential inclusion effect.

Overall, our results demonstrate that BRIE yields
reproducible estimates of exon inclusion ratios in single
cells and provides an effective tool for differential isoform
quantification between scRNA-seq data sets. BRIE therefore
expands the scope of scRNA-seq experiments to probe the
stochasticity of RNA splicing. As splicing is implicated in
a number of disease and developmental processes, BRIE
can considerably enhance the usefulness of scRNA-seq
technologies in both fundamental and translational biology.
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Figure 3. Detection of differential splicing between cells. (A) Percentage of differential splicing events between human HCT116 cells, detected by MISO,
rMATS, BRIE and its mode with shared weights (i.e., BRIE.share) with different thresholds. MISO and BRIE use Bayes factor (bf) and rMATS uses false
discovery rate (q value). (B) Percentage of differential splicing events between mouse early embryonic cells at 6.5 day or 7.75 day. The threshold is bf >10 for
MISO and BRIE, and q<0.05 for rMATS. Diamond indicates pooling reads of 20 cells in each group. (C) An example exon-skipping event in DNMT3B in 3
mouse cells at 6.5s days and 3 cells at 7.75days. The left panel is sashimi plot of the reads density and the number of junction reads. The right panel is the prior
distribution in blue curve and a histogram of the posterior distribution in black, both learned by BRIE. For the histogram, the red line is the mean and the dash
lines are the 95% confidence interval.

Current work to extend this study of splicing in single cells
includes two directions. First, we are trying to apply BRIE
into a wider range of real scRNA-seq data sets to show the
power of splicing events as markers for identifying cell types
or cell states. Second, we are interested in adding a Gaussian
process into the Bayesian hierarchical model to account for the
pseudo-time trajectory of the splicing among cell population.
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